JEOL Resourceshttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-DownloadsAtomic resolution structure results from the JEOL 300 kV CRYO ARM™ TEMhttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/atomic-resolution-structure-results-from-the-jeol-300-kv-cryo-arm-temCRYO ARM™ 300Thu, 10 Dec 2020 11:15:12 GMTHigh resolution structure determination by electron cryo-microscopy (cryoEM) and Single Particle Analysis (SPA) has progressed to the point where structures can be determined routinely to better than 2Å on a 300 kV microscope. Here, we show results from Kato et al. at1 Osaka University from the JEOL CRYO ARM™ 300 installed at SPring8 (Riken, Japan), that was obtained on mouse heavy chain apo-ferritin at 1.5Å resolution. The 3D map shows surprising details in the map reflecting the high resolution quality of the data.<p>High resolution structure determination by electron cryo-microscopy (cryoEM) and Single Particle Analysis (SPA) has progressed to the point where structures can be determined routinely to better than 2Å on a 300 kV microscope. Here, we show results from Kato et al. at1 Osaka University from the JEOL CRYO ARM™ 300 installed at SPring8 (Riken, Japan), that was obtained on mouse heavy chain apo-ferritin at 1.5Å resolution. The 3D map shows surprising details in the map reflecting the high resolution quality of the data.</p> Atomic resolution structures of biological macromolecules using microED on JEOL TEMshttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/atomic-resolution-structures-of-biological-macromolecules-using-microed-on-jeol-temsJEM-ARM300F2 GRAND ARM™2Wed, 09 Dec 2020 13:23:39 GMTMicro electron diffraction, or microED, is a technique aimed at solving structures of biological macromolecules by electron diffraction. Barn-storming work by the group from Prof. Gonen showed the impressive impact and promise of this technique1. The technique borrows from X-ray crystallography in that precession techniques are used for data collection and that much of the well-established software for solving structures by X-ray crystallography can be used for microED. However, it differs in a fundamental way in that electrons are used, which, owing to the substantially larger scattering cross-section of electrons with biological matter, means much smaller crystals can be used.<h3><strong>Also see:</strong> <a href="/RESOURCES/Electron-Optics/Documents-Downloads/jeol-cryo-arm-achieves-top-resolution">JEOL CRYO ARM™ Achieves Top Resolution August 2023</a>.</h3> <p>Micro electron diffraction, or microED, is a technique aimed at solving structures of biological macromolecules by electron diffraction. Barn-storming work by the group from Prof. Gonen showed the impressive impact and promise of this technique<sup>1</sup>. The technique borrows from X-ray crystallography in that precession techniques are used for data collection and that much of the well-established software for solving structures by X-ray crystallography can be used for microED. However, it differs in a fundamental way in that electrons are used, which, owing to the substantially larger scattering cross-section of electrons with biological matter, means much smaller crystals can be used. Thus, crystals the size of a few microns are perfectly adequate for microED. The current crop of cameras and levels of microscope automation allow for the rapid collection of a full data set in a matter of minutes. By combining microED with the principle steps of SPA as employed in SerialEM<sup>2</sup>, a single overnight run can yield hundreds of microED data sets<sup>3</sup>. Note that because diffraction data is collected, the acquisition process is immune to mechanical vibrations and drift; only a shift caused by poor eucentricity that would move the crystal out of the selected aperture field of view would impact the data collection.</p> <p>MicroED can be applied on every new electron microscope in the JEOL TEM line-up. Precise control of the goniometer’s tilting speed compatible with microED is standard and can be set through either SerialEM or Recorder, the latter being part of JEOL’s TEMography package (SIF). SerialEM was first introduced on a JEOL JEM-2200FS in 2006 and is now fully compatible with all of JEOL’s electron microscopes. A record-breaking 1.34Å structure of apo-ferritin was recently obtained from JEOL’s latest generation of cryo-TEMs, the CRYO ARM™, a microscope available at 200 and 300 kV with a cold field emission gun and in-column energy filter<sup>4</sup>.</p> <p>This application note reports on microED results obtained on a JEOL JEM-F200 outfitted with a cold FEG and a Gatan Elsa holder to keep the sample at -177ºC for the sake of reducing radiation damage<sup>5</sup>. Figure 1 shows a gallery of principle checks whether crystals of L-histidine will deliver high-resolution diffraction patterns for microED. The micro-crystals are deposited on ultrathin carbon films overlaid on lacey carbon. </p> <p><strong><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/647/microED%2001.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=ckExexcwf58QyC63uGcNf%2F9BCLM%3D" /><br /> Fig. 1:</strong> Diffraction images of L-histidine in defocused diffraction mode without (left) and with (middle) a selected area aperture inserted showing the L-histidine crystals. The focused diffraction pattern is shown on the right showing strong Bragg reflections.</p> <p>Figure 2 shows several frames from one of the microED data sets acquired under continuous rotation at 0.25º/sec from -30º to +30º. The beam stopper is used to prevent the central, undiffracted beam from hitting the camera’s sensor.</p> <p><strong><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/647/microED%20fig2.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=xbJWg6zXYR8v2iN7aMQk16E4MIM%3D" /><br /> Fig. 2:</strong> Selected focused diffraction patterns from -30º to +30º microED series acquired at 0.25º/sec. Total dose was 2.4 el/Å2. </p> <p>After unpacking the movies, the individual frames are processed using standard X-ray crystallographic packages – SIR2019 and SHELXL. Table 1 shows the experimental results whereas Figure 3 shows the structures calculated from the data using direct methods. The refined map after running SHELXL shows clearly the expected atoms in the structure.</p> <table class="table"> <tbody> <tr> <th colspan="2">Table 1: experimental results</th> </tr> <tr> <td>Molecular weight (Da)</td> <td>155.16</td> </tr> <tr> <td>Measurement temperature (K)</td> <td>96</td> </tr> <tr> <td>Space group</td> <td>P212121</td> </tr> <tr> <td><em>a, b, c</em> (Å)</td> <td>5.27, 7.44, 18.99</td> </tr> <tr> <td># of reflections</td> <td>417</td> </tr> <tr> <td>R factor (%)</td> <td>19.81</td> </tr> </tbody> </table> <p><strong><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/647/microED%20fig3.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=jDuC0Wm8aGey%2FIMADEMFbw3PoyE%3D" /><br /> Fig 3:</strong> Structure of L-histidine after initial direct method calculation using SIR2019 (left) and after refinement using SHELXL (middle) with the structure formula shown right.</p> <p>Conclusion: Micro electron diffraction data can be readily acquired using a JEOL cryo-electron microscope using relatively shallow tilt series. The resulting data can immediately be processed using available pipe lines for X-ray diffraction data enabling rapid structure determination of small molecules by electron diffraction.</p> <p>Contact your local JEOL representative to learn more about JEOL TEMs and microED using SIF Recorder or SerialEM.</p> <h3>References:</h3> <ol> <li>B.L. Nannenga et al., Nature Methods 11 (2014) 927.</li> <li>D.N. Mastronarde, J. Struct. Biol. 152 (2005) 36.</li> <li>M.J. de la Cruz et al., Ultramicroscopy 201 (2019) 77.</li> <li>M. Tegunov et al. (2020) <a href="https://doi.org/10.1101/2020.06.05.136341" target="_blank">https://doi.org/10.1101/2020.06.05.136341</a>.</li> <li>Guzmán-Afonso et al., Nature Comm 10 (2019) 3537.</li> </ol> CRYO ARM Bibliographyhttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/cryo-arm-bibliographyCRYO ARM™ 300Wed, 18 Jan 2023 10:32:55 GMTCRYO ARM Bibliography<p style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><b><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">JEOL CRYO ARM 200 - BIBLIOGRAPHY</span></span></span></span></span></b></span></span></span></p> <ol> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Young, Lucy C et al. “Destabilizing NF1 variants act in a dominant negative manner through neurofibromin dimerization.” Proceedings of the National Academy of Sciences of the United States of America vol. 120,5 (2023): e2208960120. doi:10.1073/pnas.2208960120</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Pöll, Gisela et al. “Impact of the yeast S0/uS2-cluster ribosomal protein rpS21/eS21 on rRNA folding and the architecture of small ribosomal subunit precursors.” PloS one vol. 18,3 e0283698. 30 Mar. 2023, doi:10.1371/journal.pone.0283698</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Katsyv, Alexander et al. “Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC.” Journal of the American Chemical Society vol. 145,10 (2023): 5696-5709. doi:10.1021/jacs.2c11683</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Daiß, Julia L et al. “The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans.” <i>Life science alliance</i> vol. 5,11 e202201568. 1 Sep. 2022, doi:10.26508/lsa.202201568</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Gfrerer, Sabrina et al. “A Micrarchaeon Isolate Is Covered by a Proteinaceous S-Layer.” <i>Applied and environmental microbiology</i> vol. 88,5 (2022): e0155321. doi:10.1128/AEM.01553-21</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yamaguchi, Tomoko et al. “Structure of the molecular bushing of the bacterial flagellar motor.” <i>Nature communications</i> vol. 12,1 4469. 22 Jul. 2021, doi:10.1038/s41467-021-24715-3</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Çoruh, Orkun et al. “Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster.” <i>Communications biology</i> vol. 4,1 304. 8 Mar. 2021, doi:10.1038/s42003-021-01808-9</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Ariyoshi, Mariko et al. “Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C.” <i>The EMBO journal</i> vol. 40,5 (2021): e105671. doi:10.15252/embj.2020105671</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kishikawa, Jun-Ichi et al. “Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance.” eLife vol. 9 e56862. 8 Jul. 2020, doi:10.7554/eLife.56862</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Merk, Alan et al. “1.8 Å resolution structure of β-galactosidase with a 200 kV CRYO ARM electron microscope.” <i>IUCrJ</i> vol. 7,Pt 4 639-643. 11 Jun. 2020, doi:10.1107/S2052252520006855</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Oide, Mao et al. “Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy.” <i>The FEBS journal</i> vol. 287,16 (2020): 3472-3493. doi:10.1111/febs.15224</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yamada, Yurika et al. “Cardiac muscle thin filament structures reveal calcium regulatory mechanism.” <i>Nature communications</i> vol. 11,1 153. 9 Jan. 2020, doi:10.1038/s41467-019-14008-1</span></span></span></span></span></span></span></span></li> <li style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kato, Takayuki et al. “Structure of the native supercoiled flagellar hook as a universal joint.” <i>Nature communications</i> vol. 10,1 5295. 22 Nov. 2019, doi:10.1038/s41467-019-13252-9</span></span></span></span></span></span></span></span></li> </ol> <p style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span></span></span></span></p> <p style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><b><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span></b></span></span></span></p> <p style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><b><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif">JEOL CRYO ARM 300 - BIBLIOGRAPHY</span></span></span></b></span></span></span></p> <ol> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tanaka, Mayuki et al. “Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1.” Nature chemical biology, 10.1038/s41589-023-01513-0. 24 Jan. 2024, doi:10.1038/s41589-023-01513-0</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tani, Kazutoshi et al. “High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum.” Communications biology vol. 7,1 176. 12 Feb. 2024, doi:10.1038/s42003-024-05863-w</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tomono, Junta et al. “Direct visualization of ribosomes in the cell-free system revealed the functional evolution of aminoglycoside.” Journal of biochemistry, mvae002. 16 Jan. 2024, doi:10.1093/jb/mvae002</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Bloch, Yehudi et al. “Structures of complete extracellular receptor assemblies mediated by IL-12 and IL-23.” Nature structural & molecular biology, 10.1038/s41594-023-01190-6. 29 Jan. 2024, doi:10.1038/s41594-023-01190-6</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Acar, Delphine Diana et al. “Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted.” EBioMedicine vol. 100 (2024): 104960. doi:10.1016/j.ebiom.2023.104960</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Li, Liushuai et al. “Neutralizing monoclonal antibodies against the Gc fusion loop region of Crimean-Congo hemorrhagic fever virus.” PLoS pathogens vol. 20,2 e1011948. 1 Feb. 2024, doi:10.1371/journal.ppat.1011948</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Artigas, Pablo et al. “A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities.” Proceedings of the National Academy of Sciences of the United States of America vol. 120,52 (2023): e2313999120. doi:10.1073/pnas.2313999120</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Suzuki Yohei et al. “Essential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound d-Fructose Dehydrogenase with Structural Bioelectrochemistry.” ACS Catalysis 2023 13 (20), 13828-13837, doi: 10.1021/acscatal.3c03769</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Akiba, Hiroki et al. “Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection.” Communications biology vol. 6,1 987. 27 Sep. 2023, doi:10.1038/s42003-023-05326-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Liu, Qianyun et al. “Broadly neutralizing antibodies derived from the earliest COVID-19 convalescents protect mice from SARS-CoV-2 variants challenge.” Signal transduction and targeted therapy vol. 8,1 347. 14 Sep. 2023, doi:10.1038/s41392-023-01615-0</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Bui, Han Ba et al. “Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn2+ uptake into the Golgi apparatus.” Nature communications vol. 14,1 4770. 8 Aug. 2023, doi:10.1038/s41467-023-40521-5</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yang, Shangyu et al. “Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein M2.” Nature communications vol. 14,1 5186. 25 Aug. 2023, doi:10.1038/s41467-023-40748-2</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Abe, Kazuhiro et al. “Deep learning driven de novo drug design based on gastric proton pump structures.” Communications biology vol. 6,1 956. 19 Sep. 2023, doi:10.1038/s42003-023-05334-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Zhao, Yan et al. “Cryo-EM structures of African swine fever virus topoisomerase.” mBio vol. 14,5 (2023): e0122823. doi:10.1128/mbio.01228-23</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Torino, Stefania et al. “Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting.” Nature methods vol. 20,9 (2023): 1400-1408. doi:10.1038/s41592-023-01967-z</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Anzai, Itsuki et al. “Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain.” Microbiology spectrum, e0365523. 28 Feb. 2024, doi:10.1128/spectrum.03655-23</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Adachi Taiki et al. “Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases.” ACS Catalysis 2023 13 (12), 7955-7965. doi: 10.1021/acscatal.3c01962</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Li, Long et al. “Spatiotemporal Landscape for the Sophisticated Transformation of Protein Assemblies Defined by Multiple Supramolecular Interactions.” ACS nano vol. 17,15 (2023): 15001-15011. doi:10.1021/acsnano.3c04029</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Fujita, Junso et al. “Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody.” Nature communications vol. 14,1 4073. 10 Jul. 2023, doi:10.1038/s41467-023-39807-5</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Wang, Xiaoshen et al. “Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity.” Cell research vol. 33,9 (2023): 699-711. doi:10.1038/s41422-023-00839-7</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">De Gieter, Steven et al. “Sterol derivative binding to the orthosteric site causes conformational changes in an invertebrate Cys-loop receptor.” eLife vol. 12 e86029. 3 Jul. 2023, doi:10.7554/eLife.86029</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Burton-Smith, Raymond N et al. “Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover.” Communications biology vol. 6,1 755. 28 Jul. 2023, doi:10.1038/s42003-023-05110-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Maki-Yonekura, Saori et al. “Measurement of charges and chemical bonding in a cryo-EM structure.” Communications chemistry vol. 6,1 98. 31 May. 2023, doi:10.1038/s42004-023-00900-x</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Sleutel, Mike et al. “Structural analysis and architectural principles of the bacterial amyloid curli.” Nature communications vol. 14,1 2822. 17 May. 2023, doi:10.1038/s41467-023-38204-2</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Isaacs, Ariel et al. “Structure and antigenicity of divergent Henipavirus fusion glycoproteins.” Nature communications vol. 14,1 3577. 16 Jun. 2023, doi:10.1038/s41467-023-39278-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Gupta, Jyoti et al. “Plakophilin-3 Binds the Membrane and Filamentous Actin without Bundling F-Actin.” International journal of molecular sciences vol. 24,11 9458. 29 May. 2023, doi:10.3390/ijms24119458</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Pei, Xudong et al. “Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer.” Nature communications vol. 14,1 3027. 25 May. 2023, doi:10.1038/s41467-023-38268-0</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Ishimaru, Hanako et al. “Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants.” Journal of virology, e0028623. 16 May. 2023, doi:10.1128/jvi.00286-23</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Fernandez, Maricruz et al. “AFM-based force spectroscopy unravels stepwise formation of the DNA transposition complex in the widespread Tn3 family mobile genetic elements.” Nucleic acids research vol. 51,10 (2023): 4929-4941. doi:10.1093/nar/gkad241</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tsirigotaki, Alexandra et al. “Mechanism of receptor assembly via the pleiotropic adipokine Leptin.” Nature structural & molecular biology vol. 30,4 (2023): 551-563. doi:10.1038/s41594-023-00941-9</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kozai, Daisuke et al. “Recognition Mechanism of a Novel Gabapentinoid Drug, Mirogabalin, for Recombinant Human α2δ1, a Voltage-Gated Calcium Channel Subunit.” Journal of molecular biology vol. 435,10 (2023): 168049. doi:10.1016/j.jmb.2023.168049</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Chen, Zhenghao et al. “Cryo-EM structures of human SPCA1a reveal the mechanism of Ca2+/Mn2+ transport into the Golgi apparatus.” Science advances vol. 9,9 (2023): eadd9742. doi:10.1126/sciadv.add9742</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Himiyama, Tomoki et al. “Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins.” Bioconjugate chemistry, 10.1021/acs.bioconjchem.3c00057. 8 Mar. 2023, doi:10.1021/acs.bioconjchem.3c00057</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Rangarajan, Erumbi S et al. “Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments.” Communications biology vol. 6,1 276. 16 Mar. 2023, doi:10.1038/s42003-023-04610-x</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Nagao, Ryo et al. “Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120.” Nature communications vol. 14,1 920. 17 Feb. 2023, doi:10.1038/s41467-023-36504-1</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Fujita, Junso et al. “Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis.” Scientific reports vol. 13,1 2279. 8 Feb. 2023, doi:10.1038/s41598-023-29396-0</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Nakanishi, Atsuko et al. “Cryo-EM analysis of V/A-ATPase intermediates reveals the transition of the ground-state structure to steady-state structures by sequential ATP binding.” The Journal of biological chemistry, 102884. 7 Jan. 2023, doi:10.1016/j.jbc.2023.102884</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yin, Jiayi et al. “Structural transitions during the cooperative assembly of baculovirus single-stranded DNA-binding protein on ssDNA.” Nucleic acids research vol. 50,22 (2022): 13100-13113. doi:10.1093/nar/gkac1142</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Wang, Xiaoshen et al. “Target RNA-guided protease activity in type III-E CRISPR-Cas system.” Nucleic acids research vol. 50,22 (2022): 12913-12923. doi:10.1093/nar/gkac1151</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Rangarajan, Erumbi S et al. “The nematode HMP1/α-catenin has an extended α-helix when bound to actin filaments.” The Journal of biological chemistry, 102817. 17 Dec. 2022, doi:10.1016/j.jbc.2022.102817</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Nakano, Atsuki et al. “Structural basis of unisite catalysis of bacterial F0F1-ATPase.” PNAS nexus vol. 1,3 pgac116. 11 Jul. 2022, doi:10.1093/pnasnexus/pgac116</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Otsubo, Ryota et al. “Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein.” Scientific reports vol. 12,1 20120. 22 Nov. 2022, doi:10.1038/s41598-022-24730-4</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Lemonidis, Kimon et al. “Structural and biochemical basis of interdependent FANCI-FANCD2 ubiquitination.” The EMBO journal, e111898. 17 Nov. 2022, doi:10.15252/embj.2022111898</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yu, Guimei et al. “Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex.” Nature microbiology vol. 7,12 (2022): 2078-2088. doi:10.1038/s41564-022-01256-z</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Shkumatov, Alexander V et al. “Structural insight into Tn3 family transposition mechanism.” Nature communications vol. 13,1 6155. 18 Oct. 2022, doi:10.1038/s41467-022-33871-z</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Haney, Joanne et al. “Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles.” Nature microbiology vol. 7,11 (2022): 1879-1890. doi:10.1038/s41564-022-01242-5</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Fréchin, Léo et al. “High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome.” Journal of structural biology, vol. 215,1 107905. 12 Oct. 2022, doi:10.1016/j.jsb.2022.107905</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Li, Jiannan et al. “Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution.” Communications biology vol. 5,1 951. 12 Sep. 2022, doi:10.1038/s42003-022-03926-4</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Manik, Mohammad K et al. “Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling.” <i>Science (New York, N.Y.)</i> vol. 377,6614 (2022): eadc8969. doi:10.1126/science.adc8969</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Maeda, Ryota et al. “A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron.” <i>Communications biology</i> vol. 5,1 669. 6 Jul. 2022, doi:10.1038/s42003-022-03630-3</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kawakami, Keisuke et al. “Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome.” <i>Nature communications</i> vol. 13,1 3389. 17 Jun. 2022, doi:10.1038/s41467-022-30962-9</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yoshikawa, Tatsushi et al. “Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis.” <i>Chemical communications (Cambridge, England)</i> vol. 58,45 6478-6481. 1 Jun. 2022, doi:10.1039/d2cc01541b</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kishikawa, J et al. “Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases.” <i>Nature communications</i> vol. 13,1 1213. 8 Mar. 2022, doi:10.1038/s41467-022-28832-5</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Hogrel, Gaëlle et al. “Cyclic nucleotide-induced helical structure activates a TIR immune effector.” <i>Nature</i> vol. 608,7924 (2022): 808-812. doi:10.1038/s41586-022-05070-9</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kiss-Szemán, Anna J et al. “Cryo-EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi-state serine-protease triad.” <i>Chemical science</i> vol. 13,24 7132-7142. 18 May. 2022, doi:10.1039/d2sc02276a</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Shi, Yun et al. “Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules.” <i>Molecular cell</i> vol. 82,9 (2022): 1643-1659.e10. doi:10.1016/j.molcel.2022.03.007</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tani, Kazutoshi et al. “A Ca<sup>2+</sup>-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes.” <i>The Journal of biological chemistry</i> vol. 298,6 (2022): 101967. doi:10.1016/j.jbc.2022.101967</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Watanabe, Ryoto et al. “Particle Morphology of Medusavirus Inside and Outside the Cells Reveals a New Maturation Process of Giant Viruses.” <i>Journal of virology</i> vol. 96,7 (2022): e0185321. doi:10.1128/jvi.01853-21</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kato, Koji et al. “Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from <i>Gloeobacter violaceus</i>.” <i>eLife</i> vol. 11 e73990. 11 Apr. 2022, doi:10.7554/eLife.73990</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Li, Na et al. “Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus.” <i>Virologica Sinica</i> vol. 37,1 (2022): 127-137. doi:10.1016/j.virs.2022.01.015</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Tanaka, Saki et al. “Structural Basis for Binding of Potassium-Competitive Acid Blockers to the Gastric Proton Pump.” <i>Journal of medicinal chemistry</i> vol. 65,11 (2022): 7843-7853. doi:10.1021/acs.jmedchem.2c00338</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kuzuya, Maki et al. “Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids.” <i>Science signaling</i> vol. 15,720 (2022): eabg6941. doi:10.1126/scisignal.abg6941</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kolata, Piotr, and Rouslan G Efremov. “Structure of <i>Escherichia coli</i> respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation.” <i>eLife</i> vol. 10 e68710. 26 Jul. 2021, doi:10.7554/eLife.68710</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yu, Huaxin et al. “Cryo-EM structure of monomeric photosystem II at 2.78 Å resolution reveals factors important for the formation of dimer.” <i>Biochimica et biophysica acta. Bioenergetics</i> vol. 1862,10 (2021): 148471. doi:10.1016/j.bbabio.2021.148471</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Hiragi, Keito et al. “Structural insights into the targeting specificity of ubiquitin ligase for S. cerevisiae isocitrate lyase but not C. albicans isocitrate lyase.” <i>Journal of structural biology</i> vol. 213,3 (2021): 107748. doi:10.1016/j.jsb.2021.107748</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kawamoto, Akihiro et al. “Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries.” <i>Nature communications</i> vol. 12,1 4223. 9 Jul. 2021, doi:10.1038/s41467-021-24507-9</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Pradhan, Brajabandhu et al. “Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli.” <i>The EMBO journal</i> vol. 40,17 (2021): e106887. doi:10.15252/embj.2020106887</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Efremov, Rouslan G, and Annelore Stroobants. “Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300.” Acta crystallographica. Section D, Structural biology vol. 77,Pt 5 (2021): 555-564. doi:10.1107/S2059798321002151</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Maki-Yonekura, Saori et al. “Advances in cryo-EM and ED with a cold-field emission beam and energy filtration -Refinements of the CRYO ARM 300 system in RIKEN SPring-8 center.” Microscopy (Oxford, England) vol. 70,2 (2021): 232-240. doi:10.1093/jmicro/dfaa052</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Sutherland, Hazel et al. “The Cryo-EM Structure of Vesivirus 2117 Highlights Functional Variations in Entry Pathways for Viruses in Different Clades of the <i>Vesivirus</i> Genus.” <i>Journal of virology</i> vol. 95,13 (2021): e0028221. doi:10.1128/JVI.00282-21</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Hamaguchi, Tasuku et al. “Structure of the far-red light utilizing photosystem I of Acaryochloris marina.” <i>Nature communications</i> vol. 12,1 2333. 20 Apr. 2021, doi:10.1038/s41467-021-22502-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kato, Koji et al. “High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams.” <i>Communications biology</i> vol. 4,1 382. 22 Mar. 2021, doi:10.1038/s42003-021-01919-3</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Rennie, Martin L et al. “Structural basis of FANCD2 deubiquitination by USP1-UAF1.” <i>Nature structural & molecular biology</i> vol. 28,4 (2021): 356-364. doi:10.1038/s41594-021-00576-8</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Takaba, Kiyofumi et al. “Protein and Organic-Molecular Crystallography With 300kV Electrons on a Direct Electron Detector.” <i>Frontiers in molecular biosciences</i> vol. 7 612226. 6 Jan. 2021, doi:10.3389/fmolb.2020.612226</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Naitow, Hisashi et al. “Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release.” <i>Communications biology</i> vol. 3,1 488. 4 Sep. 2020, doi:10.1038/s42003-020-01217-4</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Fislage, Marcus et al. “Assessing the JEOL CRYO ARM 300 for high-throughput automated single-particle cryo-EM in a multiuser environment.” <i>IUCrJ</i> vol. 7,Pt 4 707-718. 11 Jun. 2020, doi:10.1107/S2052252520006065</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Takaba, Kiyofumi et al. “Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM.” <i>Journal of structural biology</i> vol. 211,2 (2020): 107549. doi:10.1016/j.jsb.2020.107549</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Rennie, Martin L et al. “Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA.” <i>EMBO reports</i> vol. 21,7 (2020): e50133. doi:10.15252/embr.202050133</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Yonekura, Koji et al. “A new cryo-EM system for electron 3D crystallography by eEFD.” Journal of structural biology vol. 206,2 (2019): 243-253. doi:10.1016/j.jsb.2019.03.009</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Kato, Takayuki, et al. “CryoTEM with a Cold Field Emission Gun That Moves Structural Biology into a New Stage.” Microscopy and Microanalysis, vol. 25, no. S2, 2019, pp. 998–999., doi:10.1017/S1431927619005725.</span></span></span></span></span></span></span></span></li> <li><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Bhella, David. “Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility.” <i>Biophysical reviews</i> vol. 11,4 (2019): 515-519. doi:10.1007/s12551-019-00571-w</span></span></span></span></span><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span></span></span></span></li> <li style="margin-bottom:11px"><span style="font-size:11pt"><span style="line-height:107%"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="line-height:107%"></span></span><span style="font-size:12.0pt"><span style="background:white"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"><span style="color:#212121">Hamaguchi, Tasuku et al. “A new cryo-EM system for single particle analysis.” <i>Journal of structural biology</i> vol. 207,1 (2019): 40-48. doi:10.1016/j.jsb.2019.04.011</span></span></span></span></span><span style="font-size:12.0pt"><span style="line-height:107%"><span style="font-family:"Times New Roman",serif"></span></span></span></span></span></span></li> </ol> CRYO ARM™ series microscopes for cryo-EM in structural analysis of proteins and viruseshttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/cryo-arm-series-microscopes-for-cryo-em-in-structural-analysis-of-proteins-and-virusesCRYO ARM™ 300Wed, 02 Feb 2022 09:20:47 GMTCryo-EM has seen an enormous increase in capabilities and potential in recent years owing to a number of technological advances, e.g. direct detector devices and improved scope automation. JEOL released two electron cryo-microscopes in 2017 specifically designed for automated and unattended, continuous operation at 200 and 300 kV, the CRYO ARM™ series. A recent update on both type of CRYO ARMs has the potential of increasing the throughput well beyond the current limit of 20,000 images/day, namely north of 50,000 images/day as well as extending the resolution to nearly true atomic resolution, i.e. 1.2Å.<h3>Introduction</h3> <p>Cryo-EM has seen an enormous increase in capabilities and potential in recent years owing to a number of technological advances, e.g. direct detector devices and improved scope automation. JEOL released two electron cryo-microscopes in 2017 specifically designed for automated and unattended, continuous operation at 200 and 300 kV, the CRYO ARM™ series. A recent update on both type of CRYO ARMs has the potential of increasing the throughput well beyond the current limit of 20,000 images/day, namely north of 50,000 images/day as well as extending the resolution to nearly true atomic resolution, i.e. 1.2Å.</p> <h3>Minimum Fringe Illumination and Aberration Free Image Shift</h3> <p>In order to increase the throughput to current levels two techniques have been critically important. One is the reduction of Fresnel fringes from the CL apertures when matching the beam diameter to the field of view of the camera. JEOL has introduced Köhler illumination on the CRYO ARM series microscopes to achieve this (Fig. 1). For the CRYO ARM™ 200 this results in Minimum Fringe Illumination, whereas on the CRYO ARM™ 300 this is implemented as Zero-Fringe Illumination. The second technique is the implementation of the Aberration Free Image Shift, where a narrow parallel beam gets steered inside the hole of a Quantifoil specimen using beam shift and image shift. This approach can be extended to cover multiple adjacent holes with an optional coma correction. (Fig. 1).</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%201.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=5aZGhmREA2XTNv%2BXRh5E8NehXPs%3D" /><br /> <strong>Fig. 1:</strong> Minimum (or Zero) Fringe Illumination implemented on the JEOL CRYO ARM™ series electron cryo-microscopes. Using Köhler illumination the Fresnel fringes  arising from the CL apertures (left) can minimized allowing the beam diameter to be matched to the field of view of the detector without sacrificing usable area (middle left). Using beam shift and image shift  with an optional correction for coma, the narrow, parallel beam can be steered inside a Quantifoil hole to create an intra-hole multi-record (middle right). Extending this to adjacent creates the inter-hole multi-record, here depicted as a 7x7x8 pattern (right).</p> <h3>Long-term stability</h3> <p>To enable long running imaging sessions two other areas were improved, i.e. stability of the Cold Field Emission gun (CFEG) and the Omega-style in-column energy filter. The CFEG requires periodic flashing to reset the emission to 100%. The second-generation CFEG can now operate for an entire day without requiring this (Fig. 2). If flashing is needed, remote control software will interrupt the imaging run, flash the tip and continue, a process which takes < 1 min. No adjustment of coma is required. The stability of the energy filter has also been dramatically improved. Both these improvements not only dramatically increase run times for imaging, but also minimize the amount of time users need to spend with the microscope resulting in better throughput. Finally, tuning of the Omega filter is now done automatically.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%202.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=kY3H55bLd8LdD2oXX8GmRgVz35Q%3D" /><br /> <strong>Fig. 2:</strong> Improvement of the CFEG reveals minimal requirements for flashing the tip (left). The Omega-style energy filter now shows minimal drift of the Zero Loss peak (right).</p> <h3>Interoperability</h3> <p>In order to optimize inter-operability between JEOL and other brands of cryo microscopes it is imperative to be able to transfer frozen-hydrated grids between microscopes. From fig. 3 we can glean that reverse transfers work. Minimal ice contamination is present on the sample after the reverse and subsequent second cryo-transfer.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%203.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=R9bfBluKhgsOkEjeIdVWvGuuXmc%3D" /><br /> <strong>Fig. 3:</strong> Results after first cryo-transfer (left) and after a reverse and subsequent cryo-transfer into a CRYO ARM 300 II (right). Minimal ice contamination accumulates during the second transfer.</p> <p>Figure 4 shows the main cartridges used in the CRYO ARM™ series electron cryo-microscopes for imaging in SPA workflows and single-axis tomography. For complete inter-operability with non-JEOL brand cryo-microscopes JEOL have developed a cartridge that is compatible with AG-clipped grids (Fig. 4). Whereas the standard cartridge uses a c-clip to secure the grid, the AG-cartridge employs a sliding cover.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%204.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=l47z76cVyHjy%2F9YfjmxczogxLjc%3D" /><br /> <strong>Fig. 4:</strong> Standard cartridges for the CRYO ARM™ series microscopes (left) and the AG-compatible cartridges (right).</p> <p>Figure 5 shows results obtained from apo-ferritin using an AG-compatible cartridge after only 30 minutes of data collection. The grid square image does not show significantly larger amounts of ice-contamination. The 3D map was obtained using only 150 micrographs and from the FSC curve can be seen to have a resolution of 2Å.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%205.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=c9zXw6qCozjS6zagqec6D%2BEOh8Y%3D" /><br /> <strong>Fig. 5:</strong> Results from apo-ferritin sample in an AG-compatible cartridge.</p> <h3>Throughput challenge I</h3> <p>Figure 6 shows results from an experiment attempted to determine how much data is needed to break 1.5Å resolution using apo-ferritin mounted in a standard cartridge. On the CRYO ARM™ 300 II this took only a half hour of data collection. In fact, the core of the particle shows a resolution of better than 1.5Å strongly suggesting that a well-behaved sample can yield usable data in about an hour. Whereas elsewhere it has been suggested that screening ought to be done using a dedicated tool, these results suggest that not only can screening be done effectively on a CRYO ARM™ 300 II -note that sample transfer and retrieval does NOT affect already loaded samples - but these results also give a clear indication how well behaved the sample is and thus a good indication how far the data can be pushed.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%206.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=j2DZ8UGVE9R8mevZFI%2F2%2FtVX6sU%3D" /><br /> <strong>Fig. 6:</strong> Results from apo-ferritin obtained to determine the amount of data/time needed to break 1.5Å. The results were obtained after only 30 minutes.</p> <h3>Throughput challenge II</h3> <p>Figure 7 shows results from pushing the data collection and processing as far as it would go within reasonable time frames. A total of 7500 micrographs were collected from which 500,000 particles were selected. Processing yielded a 1.29Å close to the limits discussed by Yip et al. (Nature 587 (2020) 157. The CFEG clearly gives data that is extremely close to be officially called atomic resolution, but in a standard package in for a price considerably less than the other-brand cryo-microscopes.<br /> Final note: all the data collection is done using serialEM employing a multi-record scheme with a 5x5x4 pattern imaged on a K3 camera.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/CRYO%20ARM%E2%84%A2%20series%20microscopes%20for%20cryo-EM%20fig%207.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=CPy9Tw23Updbd3Vj9vqU5I%2F27PM%3D" /><br /> <strong>Fig. 7:</strong> Results from apo-ferritin sample. Final map is at 1.29Å resolution.</p> <h3>Teaser</h3> <p>Ask us about our CRYO ARM™ 200 II electron cryo-microscope. Also, ask us about our uptime guarantee.</p> <div class="alert alert-info"> <ol> <li> <h4>The JEOL CRYO ARM™ series electron cryo-microscopes enable researchers to get <strong>fast results.</strong></h4> </li> <li> <h4>The JEOL CRYO ARM™ series electron cryo-microscopes allow researchers to get <strong>nearly atomic resolution data.</strong></h4> </li> <li> <h4>The JEOL CRYO ARM™ series enjoys impressively <strong>robust usage times</strong> of more than a year with single interruption.</h4> </li> </ol> </div> <hr /> <p style="text-align: center;"><u>Jaap Brink</u><sup>1</sup>, Taku Fukumura<sup>1</sup>, Tom Isabell<sup>1</sup>, Sohei Motoki<sup>2</sup>, Isamu Ishikawa<sup>2</sup>, Yoshi Okhura<sup>2</sup><br /> <small><sup>1</sup>JEOL USA, Inc., Peabody, 01960 MA. USA, <sup>2</sup>JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo 196-8558, JAPAN</small></p> CryoNotehttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/cryonoteCRYO ARM™ 300Sun, 13 Feb 2022 17:08:15 GMT“Visualize the truth” is a hope of researchers who use various measuring equipment. Researchers who use electron microscopes as well have a desire to observe the real structure. But actually, in experiments using electron microscopes, many problems arise: They include damage regions of the specimen when it is cut for the size suited to observation, artifacts due to the staining that is applied to enhance image contrast, deformation caused by substitution of water to resin for withstanding vacuum exposure, and thermal damage to the specimen with electron-beam irradiation. As a result, the visualization of the real structure in the microscope image becomes increasingly difficult. One recommended solution is to cool the specimen, that is, “Cryo” techniques. This “Cryo Note” introduces some of the diversified cryo-techniques. We sincerely hope your challenge to observe the “real structure” will be solved by “Cryo” methods.<p>“Visualize the truth” is a hope of researchers who use various measuring equipment. Researchers who use electron microscopes as well have a desire to observe the real structure.</p> <p>But actually, in experiments using electron microscopes, many problems arise: They include damage regions of the specimen when it is cut for the size suited to observation, artifacts due to the staining that is applied to enhance image contrast, deformation caused by substitution of water to resin for withstanding vacuum exposure, and thermal damage to the specimen with electron-beam irradiation. As a result, the visualization of the real structure in the microscope image becomes increasingly difficult.</p> <p>One recommended solution is to cool the specimen, that is, “Cryo” techniques. This “Cryo Note” introduces some of the diversified cryo-techniques. We sincerely hope your challenge to observe the “real structure” will be solved by “Cryo” methods.</p> <p>This CryoNote includes:</p> <ul> <li>Cryo History</li> <li>A wide range of Cryo-techniques</li> <li>Freezing</li> <li>Sectioning / Fracturing</li> <li>Etching (Ice sublimation)</li> <li>Cryo-TEM</li> <li>Freeze Substitution</li> <li>Freeze Replication</li> <li>Cryo-SEM</li> <li>Low-Vacuum SEM and Cooling with Peltier element</li> <li>Cryo-FIB</li> <li>Cooling CP (Cryo-CP)</li> </ul> High Throughput in SPA on JEOL Cryo-TEMshttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/high-throughput-in-spa-on-jeol-cryo-temsCRYO ARM™ 300Wed, 02 Feb 2022 07:43:55 GMTUsing a multi-hole imaging scheme, researchers have been able to reach a hitherto unprecedented milestone of 20,000 images/day on both a CRYO ARM™ 300 II and a JEM-F200. Given that many structures on EMPIAR have required around 5000 images, essentially 4-5 projects can be accomplished on a daily basis, which opens up new opportunities for routine high resolution structure determination at unprecedented levels.<p>The field of Single Particle Analysis (SPA) in cryo-EM has matured to allow for the identification of waters and/or coordinated metal ions in a 3D map of well-behaved proteins, as well as the identification of particulars isoforms of some amino acids<sup>1</sup>. Near atomic resolution has been obtained that begins to hint at densities associated with hydrogens<sup>2</sup>. The low signal-to-noise ratio of cryo-EM images as well as the particle mass and the targeted resolution typically requires several hundreds of thousands of individual particle images. The single most time-consuming component in any SPA workflow is positioning the stage on a target hole of a grid. Drift associated with this action becomes increasingly important as the target resolution increases resulting in a natural desire to minimize the frequency of stage positioning. Targeting can alternatively be accomplished using a combination of beam shift with a compensatory image shift to bring the target in the field of view of the camera. This manner of targeting can be achieved with an optional correction for beam tilt. This scheme can be applied to obtain multiple images inside a single hole, or extended across multiple holes (Fig. 1). Here, a 7 x 7 x 8 scheme is depicted yielding 392 images for a single stage movement. Clearly, the ability to increase the reach of the deflectors plays an important role in determining the raw throughput. However, most of the overhead required for imaging goes up on exposure and read-out of the camera.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/High%20Throughput%20in%20SPA%20on%20JEOL%20Cryo-TEMs%20fig%201.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=I11ZsPdKLLsFQRiYBWP8omYm3D4%3D" /><br /> <strong>Fig. 1:</strong> Typical multi-hole imaging scheme using 8 images for an intra-hole multi record (left) and a 7 x 7 for an inter-hole multi record yielding a total of 392 images for a single stage move.</p> <p style="text-align: center;">JEOL has been steadily working with researchers around the world to improve the throughput of their cryo microscopes, regardless of whether the system has a side-entry goniometer such as a JEM- F200, or whether the scope has an autoloader, i.e. a cartridge- based stage such as the CRYO ARM™ series of microscopes. Using a multi-hole imaging scheme, researchers have been able to reach a hitherto unprecedented milestone of 20,000 images/day on both a CRYO ARM™ 300 II<sup>3</sup> and a JEM-F200. Given that many structures on EMPIAR have required around 5000 images, essentially 4-5 projects can be accomplished on a daily basis, which opens up new opportunities for routine high resolution structure determination at unprecedented levels.<br />  <br /> <img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/High%20Throughput%20in%20SPA%20on%20JEOL%20Cryo-TEMs%20fig%202.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=cH7%2FraD%2FpFJIxwZgI6qwEn2KHEw%3D" /><br /> <strong>Fig. 2:</strong> Throughput achieved in various years ranging from 2000s to 2021.</p> <h3>References:</h3> <ol> <li>Merk, A., Fukumura, T., Zhu, X., Darling, J.E., Grisshamer, R., Ognejenović and Subramaniam, S. (2020), IUCrJ 7, 639-643.</li> <li>Tegunov, D., Xue, L., Dienemann, C., Cramer, P. and Mahamid, J., (2021) Nature Methods 18, 186-193.</li> <li>Kinoshita, M., personal communication.</li> </ol> Hinting at Hydrogens in JEOL CRYO ARM™ Datahttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/hinting-at-hydrogens-in-jeol-cryo-arm-dataCRYO ARM™ 300Wed, 02 Feb 2022 08:04:49 GMTHigh resolution structure determination by electron cryo-microscopy (cryoEM) and Single Particle Analysis (SPA) has progressed to the point where structures can routinely be determined to be better than 2Å resolution using either a 200 or a 300 kV microscope. At 1.8Å resolution, details like amino acid isoforms can be distinguished. This application note highlights improved results that were obtained on apoferritin at 1.34Å resolution that hint at new features.<p>High resolution structure determination by electron cryo-microscopy (cryoEM) and Single Particle Analysis (SPA) has progressed to the point where structures can routinely be determined to be better than 2Å resolution using either a 200 or a 300 kV microscope. At 1.8Å resolution, details like amino acid isoforms can be distinguished<sup>1</sup>. This application note highlights improved results that were obtained on apoferritin at 1.34Å resolution that hint at new features.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/Hinting%20at%20Hydrogens%20in%20JEOL%20CRYO%20ARM%E2%84%A2%20Data%20fig%201.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=HfyTXqz9PEOkaHp3GRjqQZvOu10%3D" /><br /> <strong>Fig. 1:</strong> 1.34Å resolution 3D map of apo-ferritin<sup>3</sup>.</p> <p>Images from frozen-hydrated apoferritin were originally obtained by Kato et al. on the JEOL CRYO ARM™ 300 installed at SPring8 (Riken, Japan) and yielded a map at 1.54Å resolution<sup>2</sup>. This data is available under accession code EMPIAR-10204. The images were re-processed using M and yielded a map at 1.34Å resolution (Fig. 1)<sup>3</sup>. Figure 2 shows portion of that map along the 4-fold symmetry axis. This map clearly reflects the high quality of the reconstruction. Holes are clearly visible in all of the aromatic residues, e.g. Tyr<sup>40</sup> or Phe<sup>51</sup>, but also in the pyrrolidine ring of prolines, e.g. Pro<sup>127</sup> (Fig. 3). The aromatic residues all show bumps tantalizingly suggesting hydrogens.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/Hinting%20at%20Hydrogens%20in%20JEOL%20CRYO%20ARM%E2%84%A2%20Data%20fig%202.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=2G212U4qdy1FMxvSXm9LWivgrvg%3D" /><br /> <strong>Fig. 2:</strong> Portion of the 1.34Å map at the 4-fold symmetry axis.</p> <p>The JEOL CRYO ARM™ 300 equipped with a cold field emission gun and a direct detector enables the determination of biological macromolecular structures to well below 1.5Å resolution, where details like isoforms are clearly established but also with hints at the presence of hydrogens.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/Hinting%20at%20Hydrogens%20in%20JEOL%20CRYO%20ARM%E2%84%A2%20Data%20fig%203.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=rI4VuLauNs%2F9szfAPJ33lPA0JOI%3D" /><br /> <strong>Fig. 3:</strong> Selected residues from both maps to demonstrate the improvement in map quality for Phe<sup>51</sup> (A), Tyr<sup>40</sup> (B) and Pro<sup>127</sup> (C) at 1.54 Å (left) and 1.34Å resolution (right).</p> <h3>References:</h3> <ol> <li>Merk, A., Fukumura, T., Zhu, X., Darling, J.E., Grisshamer, R., Ognejenović and Subramaniam, S. (2020), IUCrJ 7, 639-643.</li> <li>Kato, T., Makino, F., Nakane, T., Terahara, N., Kaneko, T., Shimizu, Y., Motoki, S., Ishikawa, I., Yonekura, K. & Namba, K. (2019). Microsc. Microanal. 25, 998–999. <a href="https://doi.org/10.1017/S1431927619005725">https://doi.org/10.1017/S1431927619005725</a>.</li> <li>Tegunov, D., Xue, L., Dienemann, C., Cramer, P. and Mahamid, J., (2021) Nature Methods 18, 186-193.</li> </ol> JEOL COSMO™ Tunehttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/jeol-cosmo-tuneJEM-ARM300F2 GRAND ARM™2Thu, 10 Dec 2020 11:03:37 GMTAuto tuning of aberration corrector<p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/COSMO%20Tune%201.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=SbnrfQvgfMJlChAL%2B3qcPZ2UW2A%3D" /></p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/COSMO%20Tune%202.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=bti0H7tZ26e6e2TvV4LUgkcHUyk%3D" /></p> JEOL CRYO ARM™ achieves top resolutionhttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/jeol-cryo-arm-achieves-top-resolutionCRYO ARM™ 300Wed, 23 Aug 2023 12:40:57 GMTThe field of single particle structure analysis (SPA) by cryo-electron microscopy reached new highs with the publication of a 1.19Å structure of apo-ferritin by Maki-Yonekura et al. obtained using a JEOL CRYO ARM™ 300 model 33001. This electron cryo-microscope was specifically designed for highly automated workflows capable of the unattended acquisition thousands of images of vitrified specimens. Workflow support of the JEOL CRYO ARM™ is available for SPA, batch tomography and microED.<p>The field of single particle structure analysis (SPA) by cryo-electron microscopy reached new highs with the publication of a 1.19Å structure of apo-ferritin by Maki-Yonekura et al. obtained using a JEOL CRYO ARM™ 300 model 33001. This electron cryo-microscope was specifically designed for highly automated workflows capable of the unattended acquisition thousands of images of vitrified specimens. Workflow support of the JEOL CRYO ARM™ is available for SPA, batch tomography and microED. The specimen used in the study, apo-ferritin, is a conveniently available benchmark protein used for determining the performance of these highly automated cryo microscopes. In instances where a single chain version is used, 24-fold non-crystallographic averaging can be applied, which vastly improves the signal-to-noise in cryo-EM images.</p> <p style="text-align: center;"><img alt="Fig. 1: Atlas composed of 5x5 pieces of a frozen-hydrated sample imaged at 80x (A). Same grid, but now imaged at 300x showing 4 grid squares that reveal the subtle variation in ice thickness across grid squares (B). Single grid square of the same grid imaged at 800x. All the holes of this sample are filled with thin ice (C)." src="https://jeolusa.s3.amazonaws.com/resources_eo/JEOL%20CRYO%20ARM%E2%84%A2%20achieves%20top%20resolution%2001.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=JpTbRbgoBatKUmMLUGLIUHZFJPU%3D" /><br /> Fig. 1: Atlas composed of 5x5 pieces of a frozen-hydrated sample imaged at 80x (A). Same grid, but now imaged at 300x showing 4 grid squares that reveal the subtle variation in ice thickness across grid squares (B). Single grid square of the same grid imaged at 800x. All the holes of this sample are filled with thin ice (C).</p> <p>SPA workflows rely on atlases or maps of the specimen, which allow stage navigation to be used in targeting regions/holes of interest (Fig. 1). Maps taken at successive higher mags allow for precise targeting of holes in the support film using a combination of stage shift and deflector-based shift.</p> <p>A total of 7900 movies were acquired on a K3 camera at 0.5Å/pixel yielding a total of 2,000,000 particles that were subjected to processing in Relion-3.1. The final map was computed at 1.19Å resolution (Fig. 2). The data was deposited in the EMDB under accession number EMD-35984.</p> <p style="text-align: center;"><img alt="Fig. 2: Apo-ferritin at 1.19Å resolution." src="https://jeolusa.s3.amazonaws.com/resources_eo/JEOL%20CRYO%20ARM%E2%84%A2%20achieves%20top%20resolution%2002.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=79hADtv0UqDBQxhlLwXqnF7L%2FTY%3D" /><br /> Fig. 2: Apo-ferritin at 1.19Å resolution.</p> <h2>References</h2> <ul> <li>S. Maki-Yonekura, K. Kawakami, K. Takaba, T. Hamaguchi and K. Yonekura (2023), Comm. Chemistry 6, 98</li> </ul> JEOL CRYO ARM™ and inter-operabilityhttps://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/jeol-cryo-arm-and-inter-operabilityCRYO ARM™ 300Wed, 02 Feb 2022 08:28:05 GMTDetermining the near-atomic resolution structure of a biological macromolecule requires time on a high-end electron cryo-microscope. Depending on the local situation this could mean acquiring images of frozen-hydrated specimens on a JEOL CRYO ARM™ and/or another cryo microscope. To optimize inter-operability between different brands of cryo-microscopes, JEOL have investigated two related aspects: a) the reverse transfer, that is extracting frozen-hydrated specimens from one microscope to be transferred to another one, and b) the usability of a special cartridge designated as AG that are AutoGrid compatible.<p>Determining the near-atomic resolution structure of a biological macromolecule requires time on a high-end electron cryo-microscope. Depending on the local situation this could mean acquiring images of frozen-hydrated specimens on a JEOL CRYO ARM™ and/or another cryo microscope. To optimize inter-operability between different brands of cryo-microscopes, JEOL have investigated two related aspects: a) the reverse transfer, that is extracting frozen-hydrated specimens from one microscope to be transferred to another one, and b) the usability of a special cartridge designated as AG that are AutoGrid compatible.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/JEOL%20CRYO%20ARM%E2%84%A2%20and%20inter-operability%20fig%201.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=0dsSPwdRE0OSQO2LrOZS5SkVee0%3D" /><br /> <strong>Fig. 1:</strong> Images before (left) and after (right) a reverse transfer on a JEOL CRYO ARM™ 300.</p> <p>Figure 1 shows results from the reverse transfer procedure. A pre-cooled transfer cup was used to ensure the specimens remain in the frozen-hydrated state. A minimal amount of transfer ice is present after the procedure but overall the specimen is in good condition.</p> <p style="text-align: center;"><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/JEOL%20CRYO%20ARM%E2%84%A2%20and%20inter-operability%20fig%202.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=331xmF7g0j61Lfv3cbKCuDDGrCE%3D" /><br /> <strong>Fig. 2:</strong> Cartridges compatible with AutoGrids (A) and retrieval of frozen- hydrated grids (B).</p> <p>Figure 2 shows the cartridges that are critical for complete inter-operability between JEOL and other cryo- microscopes. Two are shown here, the AG-cartridge and the specimen-retrieval cartridge. The AG-cartridge is shown in Fig. 2A as a side-view (top), with the AutoGrid before insertion (bottom left) and after insertion, when it is ready for transfer into the CRYO ARM™ (bottom right). Fig. 2B shows the specimen retrieval cartridge recommended when frozen-hydrated specimens need to be transferred into another microscope.</p> <p>Both cartridges employ a sliding cover to secure the grid in the cartridge. Fig. 3 shows data acquired after a short, 30- min acquisition run on a CRYO ARM™ 300 showing that the AG-cartridge reveals no detriment in collecting high resolution images.</p> <p><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_eo/JEOL%20CRYO%20ARM%E2%84%A2%20and%20inter-operability%20fig%203.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=g7aloMO4oPvM7aGTVuJxKs60Nos%3D" /><br /> <strong>Fig. 3:</strong> 3D reconstruction of apo-ferritin after 30 min data collection of sample inserted in an AG-compatible cartridge (A). FSC curve of the dataset comprised of 91k particle showing 2Å resolution (B).</p>