JEOL Resourceshttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-DownloadsJMS-TQ4000GC for Dioxinshttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/jms-tq4000gc-for-dioxinsGC Triple-Quad MSFri, 29 Sep 2023 10:39:06 GMTDedicated SIM/SRM data quantitative analysis software for Dioxins.<p>TQ-DioK is a software dedicated for the quantitative processing, which requires simultaneous quantification of many isomers such as Dioxins and PCBs, and which requires the quantitative calculation using internal standard substances labeled with 13C isotopes. TQ-DioK has a unique GUI and functionalities that are useful for such quantitative processing.</p> Dioxins analysis using GC-MS/MS and software "TQ-DioK" - MSTips38https://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/dioxins-analysis-using-gc-msms-and-software-tq-diok-mstips38Mass Spectrometry (MS)Wed, 04 Aug 2021 13:21:13 GMTDioxins are a general term for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Their structures consist of two chlorinated rings. Many congeners differ in terms of number of chlorine atoms and binding sites (Fig. 1). These substances are considered as persistent organic pollutants (POPS) due to their presence in the environment and the health risks associated. A World Health Organization (WHO) study has demonstrated the health risks (carcinogenic and immunotoxic) when population are exposed to them. In addition, dioxins have been regulated by the Stockholm convention on POPs in May 2001. In particular, 17 substances have to be monitored because they are regulated (7 PCDDs and 10 PCDFs). The highest toxic compound is the 2378-TeCDD. Currently, dioxins analysis can be done not only using GC-HRMS but also with GC-MS/MS according to European commission regulation (EU644/2017). Especially, GC-triple quadrupole MS is interesting in terms of handling, instrument size and operating costs. Recently, JEOL has developed a new GC-triple quadrupole MS (JMS-TQ4000GC) and a new dedicated dioxins analysis software called TQ-DioK. In this study, we evaluated JMS-TQ4000GC with TQ-DioK using dioxins standard samples.<p>Dioxins are a general term for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Their structures consist of two chlorinated rings. Many congeners differ in terms of number of chlorine atoms and binding sites (Fig. 1). These substances are considered as persistent organic pollutants (POPS) due to their presence in the environment and the health risks associated. A World Health Organization (WHO) study has demonstrated the health risks (carcinogenic and immunotoxic) when population are exposed to them. In addition, dioxins have been regulated by the Stockholm convention on POPs in May 2001. In particular, 17 substances have to be monitored because they are regulated (7 PCDDs and 10 PCDFs). The highest toxic compound is the 2378-TeCDD. Currently, dioxins analysis can be done not only using GC-HRMS but also with GC-MS/MS according to European commission regulation (EU644/2017). Especially, GC-triple quadrupole MS is interesting in terms of handling, instrument size and operating costs. Recently, JEOL has developed a new GC-triple quadrupole MS (JMS-TQ4000GC) and a new dedicated dioxins analysis software called TQ-DioK. In this study, we evaluated JMS-TQ4000GC with TQ-DioK using dioxins standard samples.</p> <h3>Download the Application Note below to Learn More</h3> Analysis of Pesticides in Spinach using Triple-Quadrupole GC-MSMShttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/analysis-of-pesticides-in-spinach-using-triple-quadrupole-gc-msmsMass Spectrometry (MS)Tue, 22 Jun 2021 09:42:11 GMTAnalysis of Pesticides in Spinach Purchased from Local Grocers Using Triple-Quadrupole GC-MS/MS Analysis<h3>Introduction</h3> <p>The introduction of pesticides to improve agricultural productivity has led to a marked change in how crops are grown. However, certain pesticides have been linked to a number of health issues. As such, regulatory agencies all over the world have placed restrictions on the types and levels of pesticides that can be used for agriculture. Accordingly, food samples need to be tested for pesticide content to meet regulatory requirements. Triple-quadrupole gas chromatograph tandem mass spectrometry (GC-MS/MS) is widely used for pesticide analysis due to the sensitivity and specificity of the technique. The specificity offered by GC-MS/MS is excellent for analysis of samples with complex matrices. One such food example is spinach. Spinach frequently makes the Environmental Working Group’s “dirty dozen,” a list of fruits and vegetables ranked according to high pesticide content[1]. This makes spinach a good target for testing the capabilities of the JMS-TQ4000GC triple-quadrupole GC-MS/MS.</p> <p>In this app note, we demonstrate the ability of the JMSTQ4000GC to measure the pesticide content of spinach samples purchased from local grocers. The sensitivity and specificity offered by selected reaction monitoring (SRM) will be used against a complex spinach extract matrix, including matrixmatched standard samples.</p> <h3><span style="color:#3498db;">Click Below to Download and Read More</span></h3> Analysis of Pesticides in Kale using Triple-Quadrupole GC-MSMShttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/analysis-of-pesticides-in-kale-using-triple-quadrupole-gc-msmsMass Spectrometry (MS)Tue, 22 Jun 2021 09:34:59 GMTAnalysis of Pesticides in Kale Purchased from Local Grocers Using Triple-Quadrupole GC-MS/MS Analysis<h3>Introduction</h3> <p>The introduction of pesticides to improve agricultural productivity has led to a marked change in how crops are grown. However, certain pesticides have been linked to a number of health issues. As such, regulatory agencies all over the world have placed restrictions on the types and levels of pesticides that can be used for agriculture. Accordingly, food samples need to be tested for pesticide content to meet regulatory requirements. Triple-quadrupole gas chromatograph tandem mass spectrometry (GC-MS/MS) is widely used for pesticide analysis due to the sensitivity and specificity of the technique. The specificity offered by GC-MS/MS is excellent for analysis of samples with complex matrices. One such food example is kale. Kale frequently makes the Environmental Working Group’s (EWG) “dirty dozen,” a list of fruits and vegetables ranked according to high pesticide content. This makes kale a good target for testing the capabilities of the JMS-TQ4000GC triple-quadrupole GCMS/MS.</p> <p>In this app note, we demonstrate the ability of the JMSTQ4000GC to measure the pesticide content of kale samples purchased from local grocers. The sensitivity and specificity offered by selected reaction monitoring (SRM) will be used against a complex kale extract matrix, including matrix-matched standard samples.</p> <h3><span style="color:#3498db;">Click Below to Download and Read More</span></h3> Analysis of Pesticides in Honey using Triple-Quadrupole GC-MSMShttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/analysis-of-pesticides-in-honey-using-triple-quadrupole-gc-msmsMass Spectrometry (MS)Tue, 22 Jun 2021 09:16:32 GMTAnalysis of Pesticides in Honey Using QuEChERS Extraction and Triple-Quadrupole GC-MS/MS Analysis<h3>Introduction</h3> <p>The introduction of pesticides to improve agricultural productivity has led to significant changes in how crops are grown. However, heavy pesticide use has also had some unintended consequences, including to a number of health issues that can have severe consequences for both humans and the environment in general. One particular area of concern is the effect of pesticides on pollinators, such as honeybees. Research suggests that pesticides are adversely affecting honeybee populations and contributing to colony collapse disorder. Honeybees and other pollinators are also an important part of the global economy. According to the American Beekeeping Federation, honeybees contribute approximately $20 billion to crop production in the USA alone. With these concerns in mind, regulatory agencies all over the world have placed restrictions on the types and levels of pesticides that can be used for agriculture to not only address health concerns for humans, but also for pollinators. In order to  monitor pesticide uptake by honeybees, honey should be tested regularly for pesticide content.</p> <p>Triple-quadrupole gas chromatograph tandem mass spectrometry (GC-MS/MS) is widely used for pesticide analysis due to the sensitivity and specificity of the technique. In particular, the specificity offered by GC-MS/MS is excellent for handling the analysis of samples with complex matrices like honey. In this app note, we demonstrate the ability of the JMS-TQ4000GC to measure the pesticide content of honey samples purchased from local grocers and apiaries. The high sensitivity and specificity offered by selected reaction monitoring (SRM) will be used against a complex honey extract matrix, including matrixmatched</p> <h3><span style="color:#3498db;">Click Below to Download the Article and Read More</span></h3> Robust Terpene Analysis in Cannabis by Using Liquid Injectionhttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/robust-terpene-analysis-in-cannabis-by-using-liquid-injectionMass Spectrometry (MS)Fri, 28 May 2021 10:04:35 GMTTerpenes are a classification of aromatic compounds that are nearly ubiquitous throughout nature. Terpenes are primarily found in plants, but can also be observed in marine organisms, insects, and, to a lesser extent, higher-order animals. They are present in cannabis in significant concentrations and are one of the most interesting and diverse aspects of cannabis. They provide the unique aroma of the plant and are critical to the cannabis experience; however, understanding the role that they play in the psychoactive experience of cannabis consumption is still not well understood. Terpenes themselves are built from repeating five-carbon units called isoprene. Their classification as a monoterpene, diterpene, etc., is dependent on the number of isoprene units in their structure. Terpene content in cannabis is typically not regulated, but can provide unique insights into the “flavor profile” of the cannabis flower. Demand for terpene testing has increased significantly in the past few years as consumers become increasingly interested in the terpene profiles of the cannabis strains they consume. Cannabis has a high abundance of mono- and sesquiterpenes, and the majority of terpenes present in the flower fall into these classifications. This study presents a comprehensive gas chromatography- mass spectrometry (GC-MS) method for the analysis of 22 terpenes in cannabis flower, with a focus on developing a rapid and robust method for the analysis of terpenes in a commercial laboratory.<h2>Introduction</h2> <p>Terpenes are a classification of aromatic compounds that are nearly ubiquitous throughout nature. Terpenes are primarily found in plants, but can also be observed in marine organisms, insects, and, to a lesser extent, higher-order animals. They are present in cannabis in significant concentrations and are one of the most interesting and diverse aspects of cannabis. They provide the unique aroma of the plant and are critical to the cannabis experience; however, understanding the role that they play in the psychoactive experience of cannabis consumption is still not well understood. Terpenes themselves are built from repeating five-carbon units called isoprene. Their classification as a monoterpene, diterpene, etc., is dependent on the number of isoprene units in their structure. Terpene content in cannabis is typically not regulated, but can provide unique insights into the “flavor profile” of the cannabis flower. Demand for terpene testing has increased significantly in the past few years as consumers become increasingly interested in the terpene profiles of the cannabis strains they consume. Cannabis has a high abundance of mono- and sesquiterpenes, and the majority of terpenes present in the flower fall into these classifications.</p> <p>This study presents a comprehensive gas chromatography- mass spectrometry (GC-MS) method for the analysis of 22 terpenes in cannabis flower, with a focus on developing a rapid and robust method for the analysis of terpenes in a commercial laboratory.</p> The Use of Dispersive Solid Phase Extraction in the Detection of Pesticides in Cannabis Flower by GC-MS/MShttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/the-use-of-dispersive-solid-phase-extraction-in-the-detection-of-pesticides-in-cannabis-flower-by-gc-msmsGC Triple-Quad MSSun, 21 Feb 2021 15:13:08 GMTThis study presents a comprehensive method for the analysis of gas chromatograph (GC)-amendable pesticides in Cannabis flower. Furthermore, this method uses dispersive solid phase extraction (dSPE) to help mitigate matrix effects that are common in the flower extract. Three selected reaction monitoring (SRM) transitions were used for each target pesticide. This study was focused on developing a robust and sensitive method for GC amendable pesticides in Cannabis flower for use in the state of California. However, LC-MS/MS would also be required to analyze the complete California pesticide list.<h2>EXPERIMENTAL</h2> <p><strong>Sample Preparation:</strong><br /> Cannabis flower was ground and extracted using a mixture of acetonitrile and dimethylacetamide (DMA). The sample was spiked with a 20 ppb pesticide standard mixture consisting of the 12 compounds listed in Table 3. The extraction and dSPE workflow are outlined in Figure 1. The use of dSPE is critical for reducing matrix effects and allowing for low detection limits as shown in Figure 2.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%201.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=hbyRhlAkLgyzHQVXSIUlWnnQjQU%3D" /><br /> Fig 1</em>. Sample preparation of Cannabis flower.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%202.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=tLm7dg%2FsFyU8t3MFF6MkfuNq560%3D" /><br /> Fig 2</em>. Cannabis matrix effects before (top) and after (bottom) using dSPE.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%20t1.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=PHxY9VCgXizZFBrvjwOB3Mt3nY4%3D" /><br /> Table 1</em>: Gas Chromatograph Parameters</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%20t2.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=GDNpTUYsexeBpHjmUUfhxsIsta8%3D" /><br /> Table 2</em>: Mass Spectrometer Parameters</p> <p><strong>Instrumentation:</strong><br /> An Agilent 7890B GC combined with a JEOL JMS-TQ4000GC triple quadrupole mass spectrometer was used in this study. All injections were done using pulsed splitless liquid injection. Analysis parameters and SRM channels are detailed in Tables 1–3.</p> <h2>RESULTS</h2> <p>The SRM chromatograms for the three transitions of every pesticide tested are shown in Figures 3 – 14.  Strong signals were observed for all pesticide transitions at 20 ppb with very little interference effects.  These results clearly show that this extraction/dSPE method combined with GC-MS/MS can readily handle the action limits for GC amenable pesticides as set forth by California regulations.</p> <h2>CONCLUSIONS</h2> <p>This study showcases a rapid, sensitive, and effective method for testing GC amenable pesticides in Cannabis matrix. The use of a dSPE sample cleanup step coupled with GC-MS/MS allows for the rapid, selective screening of Cannabis products. Furthermore, low detection limits were achieved using this scenario, which in turn allows for larger dilution factors to further mitigate matrix effects. Using dSPE also allows for greater sensitivity and better chromatographic peak shapes by removing interference compounds. These results show that each pesticide can be measured at 20 ppb in cannabis matrix and that the action limits put forth by the State of California are readily achievable using this method. Furthermore, a combination of GC-MS/MS and LC-MS/MS will provide the best all-around capabilities for analyzing the entire California pesticide list.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%20t3.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=6R6Tw22hG6VTQL08JyYEGSvFzZY%3D" /><br /> Table 3</em>: SRM Transitions</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%203.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=%2Ba1nWBvlyeDQo9JAs8NbOhFl9jo%3D" /><br /> Fig 3</em>. SRM chromatograms for boscalid.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%204.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=OB0%2BwE5Yk7MAB4z%2B2PRINxLjuPg%3D" /><br /> Fig 4</em>. SRM chromatograms for cis-chlordane</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%205.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=jB3i2AIKsPgC2Tr%2BB4zCBAUfvh0%3D" /><br /> Fig 5</em>. SRM chromatograms for trans-chlordane.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%206.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=VGRwiCtUbq37SwCt0BPxyPHkjV8%3D" /><br /> Fig 6</em>. SRM chromatograms for chlorfenapyr.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%207.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=NUNbudNtackdcHufQGOkf6Bw%2BNA%3D" /><br /> Fig 7</em>. SRM chromatograms for fipronil.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%208.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=8DIz%2ByK2gijsRPvI65sJ18xnEAI%3D" /><br /> Fig 8</em>. SRM chromatograms for kresoxim-methyl.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%209.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=WCE3NBjPIElo1iW8wsrXJBnPH0g%3D" /><br /> Fig 9</em>. SRM chromatograms for methiocarb.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%2010.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=uRYSY0cCiaOuzleYIt6XZTeChyE%3D" /><br /> Fig 10</em>. SRM chromatograms for propoxur.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%2011.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=wmLKfY9pHBD%2BKbofFFTzhvYLMDo%3D" /><br /> Fig 11</em>. SRM chromatograms for chlorpyrifos.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%2012.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=65eypYT0ZIXw9%2BSehN8RYapQQg8%3D" /><br /> Fig 12</em>. SRM chromatograms for diazinone.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%2013.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=ouGIcKH2cdBA7guzAzlRrk5kLdg%3D" /><br /> Fig 13</em>. SRM chromatograms for dimethoate.</p> <p style="text-align: center;"><em><img alt="" src="https://jeolusa.s3.amazonaws.com/resources_ai/Pesticides%20in%20Cannabis%20Flower%2014.jpg?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=Phre7sm9YZ%2BjZc93OM6bdRjfZ04%3D" /><br /> Fig 14</em>. SRM chromatograms for pentachloro-nitrobenzene (PCNB).</p> Analysis of Pesticides in a Hemp Matrixhttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/analysis-of-pesticides-in-a-hemp-matrixGC Triple-Quad MSMon, 20 Jul 2020 15:43:00 GMTHemp is a strain of Cannabis sativa that has multiple industrial uses including paper, plastics, woven goods, and even food. While certain strains of Cannabis sativa are well-known for their use as a recreational drug due the presence of the psychoactive compound tetrahydrocannabinol (THC), hemp strains are defined by the U.S. federal government as those that contain less than 0.3% THC.1 Additionally, hemp strains typically contain more cannabidiol (CBD),2 which was recently approved by the FDA to treat certain types of epilepsy, and is currently being investigated as a medical treatment for other afflictions.<h2>Experimental</h2> <p>Approximately 1 gram of dried hemp flower buds (provided by Think 20 Labs, Inc.) was extracted into 10 mL of acetonitrile by sonication for 15 minutes. The extract was centrifuged at approximately 2500 rpm for 10 minutes, followed by 10X dilution. One mL of the diluted extract was put through a dSPE cleanup step using Restek Q-sep QuEChERS dSPE Tubes (AOAC 2007.01 method<sup>6</sup> and following the provided dSPE instructions.  The supernatant was used as the matrix for each sample. Each spiked sample was created by adding 10 µL of prepared pesticide standard to 90 µL of the matrix. Samples were analyzed on the JMS-TQ4000GC using the parameters and SRM channels outlined in Tables 1 - 3 below. Optimal product- and precursor-ion pairs and optimized collision energies for each pesticide were determined using built-in SRM optimization tools. Each sample was run in triplicate with the exception of the 1 ppb samples for which 8 replicates were done to calculate the instrument detection limit (IDL) where possible.</p> <h2>Results</h2> <p>Figure 1 shows the total ion current chromatogram (TICC) with labeled peaks, and Figure 2 shows several selected SRM chromatograms. Table 4 lists the data acquired for 46 pesticides analyzed by GC-MS/MS analysis. There were 35 pesticides observed at 1 ppb or less, which translates to 10 ppb on the plant. The IDL and %CV were not calculated for samples that could not be observed at 1 ppb. For samples with isomers (e.g., chlordane), the best performing isomer was used for reporting. All samples below showed good linearity, even up to 100 ppb. Example calibration curves are shown in Figure 3. Although some matrix effects were observed, system performance was generally good with very few pesticides affected by matrix interference.</p> <h2>Conclusions</h2> <p>The JMS-TQ4000GC is an excellent platform for fast, sensitive analysis of a wide range of pesticides in hemp matrix. Using built-in SRM optimization tools, optimal ion transitions and collision energies for each pesticide were determined in the presence of the matrix. The SRM method provided high sensitivity and selectivity, and reduced matrix effects without a complicated extraction method. Thirty-five pesticides were observed at one ppb or lower with good linearity, which translates to ten ppb on the flower and is sufficient to meet the action limits of jurisdictions of interest.</p> <h3>References</h3> <ol> <li>United States Department of Agriculture. <i>Establishment of a Domestic Hemp Production Program</i>; United States of America, 2019.</li> <li>Swanson, T. E. Controlled Substances Chaos: The Department of Justice’s New Policy Position on Marijuana and What It Means for Industrial Hemp Farming in North Dakota. <i>North Dekota Law Rev.</i> <b>2014</b>, <i>90</i> (3), 599–622.</li> <li>United States Drug Enforcement Administration. The Controlled Substances Act https://www.dea.gov/controlled-substances-act (accessed Mar 19, 2020).</li> <li>Health Canada. Mandatory cannabis testing for pesticide active ingredients - List and limits https://www.canada.ca/en/public-health/services/publications/drugs-health-products/cannabis-testing-pesticide-list-limits.html (accessed Mar 19, 2020).</li> <li>Dodson, L.; Laprade, N. M. <i>The Natalie M. Laprade Maryland Medical Cannabis Commission’s (MMCC) Technical Authority for Medical Cannabis Testing</i>; 2019.</li> <li>Official Methods of Analysis. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. Association of Official Agricultural Chemists: 2007.01.</li> </ol> <hr /> <p><strong>Table 1:</strong> Gas Chromatograph Parameters</p> <table class="table"> <tbody> <tr> <td>GC</td> <td>7890B (Agilent)</td> </tr> <tr> <td>Column</td> <td>ZB-5MSPlus, 30.0 m, 0.25 mm i.d., 0.25 µm<br /> (Phenomenex, Cat#:7HG-G030-11)</td> </tr> <tr> <td>Inlet liner</td> <td>Zebron Plus 4 mm Single Taper w/Wool on bottom<br /> (Phenomenex Cat#: AG2-0A11-05)</td> </tr> <tr> <td>Inlet Temp.</td> <td>260 °C<</td> </tr> <tr> <td>Carrier Gas Type, Flow</td> <td>He, 1.000 mL/min constant flow</td> </tr> <tr> <td>Mode</td> <td>Pulsed Splitless</td> </tr> <tr> <td>Pulsed Pressure, Time</td> <td>206.84 kPa, 0.550 min</td> </tr> <tr> <td>Purge Flow</td> <td>30 mL/min, 1.0 min</td> </tr> <tr> <td>Septum Purge Flow</td> <td>3.0 mL/min</td> </tr> <tr> <td>Saver flow, Time</td> <td>15 mL/min, 5.0 min</td> </tr> <tr> <td>Injection Volume</td> <td>1.0 µL</td> </tr> <tr> <td>Oven Program</td> <td>80 °C (0.75 min) → 35 °C/min → 190 °C → 5 °C/min → 240 °C → 20 °C/min → 300 °C (6 min)</td> </tr> </tbody> </table> <hr /> <p><strong>Table 2:</strong> Mass spectrometer parameters</p> <table class="table"> <tbody> <tr> <td colspan="2">JMS-TQ4000GC</td> </tr> <tr> <td>Ion Source Temp.</td> <td>250 °C</td> </tr> <tr> <td>Interface Temp.</td> <td>300 °C</td> </tr> <tr> <td>Ionization Mode</td> <td>EI+, 70 eV, 100 µA</td> </tr> <tr> <td>Measurement Mode</td> <td>SRM, High Sensitivity</td> </tr> <tr> <td>Target Cycle Time</td> <td>Approx. 330 ms</td> </tr> <tr> <td>Acquisition Rate</td> <td>2.778 Hz</td> </tr> <tr> <td>Channel Time</td> <td>20 – 100 ms</td> </tr> <tr> <td>Relative EM Voltage</td> <td>900 V</td> </tr> <tr> <td>Collision Gas</td> <td>N<sub>2</sub>, 10%</td> </tr> </tbody> </table> <hr /> <p><strong>Table 3:</strong> SRM channel data</p> <table class="table"> <tbody> <tr> <td rowspan="3">Compound</td> <td colspan="2">Quantitative ion</td> <td colspan="2">Referenced ion 1</td> <td colspan="2">Referenced ion 2</td> <td colspan="3">Collision Energy</td> </tr> <tr> <td>Precursor</td> <td>Product ion</td> <td>Precursor</td> <td>Product ion</td> <td>Precursor</td> <td>Product ion</td> <td rowspan="2">Quantitative ion</td> <td rowspan="2">Referenced ion 1</td> <td rowspan="2">Referenced ion 2</td> </tr> <tr> <td>ion <em>m/z</em></td> <td><em>m/z</em></td> <td>ion <em>m/z</em></td> <td><em>m/z</em></td> <td>ion <em>m/z</em></td> <td><em>m/z</em></td> </tr> <tr> <td>Acephate</td> <td>136</td> <td>94</td> <td>136</td> <td>42</td> <td>77</td> <td>51</td> <td>10</td> <td>15</td> <td>15</td> </tr> <tr> <td>Azoxystrobin</td> <td>344</td> <td>156</td> <td>388</td> <td>345</td> <td>388</td> <td>360</td> <td>30</td> <td>20</td> <td>10</td> </tr> <tr> <td>Bifenazate</td> <td>258</td> <td>196</td> <td>258</td> <td>199</td> <td>300</td> <td>196</td> <td>15</td> <td>10</td> <td>25</td> </tr> <tr> <td>Bifenthrin</td> <td>181</td> <td>165</td> <td>181</td> <td>166</td> <td>181</td> <td>164</td> <td>30</td> <td>20</td> <td>30</td> </tr> <tr> <td>Boscalid</td> <td>140</td> <td>112</td> <td>140</td> <td>76</td> <td>342</td> <td>140</td> <td>10</td> <td>25</td> <td>20</td> </tr> <tr> <td>Carbaril (decomp)</td> <td>144</td> <td>115</td> <td>144</td> <td>116</td> <td>89</td> <td>63</td> <td>25</td> <td>15</td> <td>15</td> </tr> <tr> <td>Carbaril (intact)</td> <td>144</td> <td>115</td> <td>144</td> <td>116</td> <td>89</td> <td>63</td> <td>25</td> <td>15</td> <td>15</td> </tr> <tr> <td>Carbofuran</td> <td>164</td> <td>149</td> <td>164</td> <td>103</td> <td>149</td> <td>103</td> <td>15</td> <td>25</td> <td>20</td> </tr> <tr> <td>Chlordane (cis)</td> <td>375</td> <td>266</td> <td>373</td> <td>266</td> <td>373</td> <td>264</td> <td>20</td> <td>25</td> <td>25</td> </tr> <tr> <td>Chlordane (trans)</td> <td>373</td> <td>266</td> <td>373</td> <td>264</td> <td>375</td> <td>266</td> <td>25</td> <td>20</td> <td>20</td> </tr> <tr> <td>Chlorfenapyr</td> <td>59</td> <td>31</td> <td>247</td> <td>227</td> <td>59</td> <td>41</td> <td>5</td> <td>15</td> <td>5</td> </tr> <tr> <td>Chlorpyrifos</td> <td>197</td> <td>169</td> <td>199</td> <td>171</td> <td>197</td> <td>134</td> <td>15</td> <td>15</td> <td>25</td> </tr> <tr> <td>Chlorpyrifos-d10</td> <td>200</td> <td>172</td> <td>260</td> <td>167</td> <td>260</td> <td>139</td> <td>20</td> <td>25</td> <td>30</td> </tr> <tr> <td>Cinerin I</td> <td>150</td> <td>108</td> <td>123</td> <td>79</td> <td>123</td> <td>81</td> <td>10</td> <td>20</td> <td>10</td> </tr> <tr> <td>Cinerin II</td> <td>107</td> <td>91</td> <td>121</td> <td>93</td> <td>121</td> <td>77</td> <td>10</td> <td>5</td> <td>25</td> </tr> <tr> <td>Clofentezine</td> <td>137</td> <td>102</td> <td>137</td> <td>75</td> <td>139</td> <td>102</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cyfluthrin I</td> <td>226</td> <td>206</td> <td>206</td> <td>151</td> <td>206</td> <td>150</td> <td>15</td> <td>25</td> <td>25</td> </tr> <tr> <td>Cyfluthrin II</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cyfluthrin III</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cyfluthrin IV</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cypermethrin I</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>20</td> </tr> <tr> <td>Cypermethrin II</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cypermethrin III</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cypermethrin IV</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Diazinone</td> <td>137</td> <td>84</td> <td>199</td> <td>135</td> <td>199</td> <td>93</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>Dichlorvos</td> <td>109</td> <td>79</td> <td>185</td> <td>93</td> <td>79</td> <td>47</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Dimethoate</td> <td>93</td> <td>63</td> <td>87</td> <td>42</td> <td>87</td> <td>46</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Ethoprophos</td> <td>158</td> <td>97</td> <td>158</td> <td>114</td> <td>97</td> <td>79</td> <td>15</td> <td>10</td> <td>20</td> </tr> <tr> <td>Etofenprox</td> <td>163</td> <td>107</td> <td>163</td> <td>135</td> <td>135</td> <td>107</td> <td>20</td> <td>10</td> <td>10</td> </tr> <tr> <td>Etoxazole</td> <td>141</td> <td>113</td> <td>300</td> <td>270</td> <td>204</td> <td>176</td> <td>15</td> <td>30</td> <td>10</td> </tr> <tr> <td>Fenoxycarb</td> <td>116</td> <td>88</td> <td>186</td> <td>157</td> <td>186</td> <td>158</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Fipronil</td> <td>213</td> <td>143</td> <td>367</td> <td>213</td> <td>213</td> <td>178</td> <td>25</td> <td>30</td> <td>20</td> </tr> <tr> <td>Fludioxonil</td> <td>248</td> <td>127</td> <td>248</td> <td>154</td> <td>248</td> <td>182</td> <td>30</td> <td>25</td> <td>20</td> </tr> <tr> <td>Imazalil</td> <td>173</td> <td>145</td> <td>215</td> <td>173</td> <td>173</td> <td>109</td> <td>20</td> <td>10</td> <td>25</td> </tr> <tr> <td>Jasmolin I</td> <td>164</td> <td>109</td> <td>123</td> <td>79</td> <td>123</td> <td>81</td> <td>10</td> <td>20</td> <td>10</td> </tr> <tr> <td>Jasmolin II</td> <td>121</td> <td>93</td> <td>121</td> <td>77</td> <td>121</td> <td>91</td> <td>10</td> <td>20</td> <td>20</td> </tr> <tr> <td>Kresoxim-methyl</td> <td>116</td> <td>89</td> <td>206</td> <td>116</td> <td>206</td> <td>131</td> <td>20</td> <td>10</td> <td>10</td> </tr> <tr> <td>Malathion</td> <td>127</td> <td>99</td> <td>93</td> <td>63</td> <td>125</td> <td>79</td> <td>10</td> <td>10</td> <td>15</td> </tr> <tr> <td>Metalaxyl</td> <td>206</td> <td>132</td> <td>132</td> <td>117</td> <td>206</td> <td>105</td> <td>20</td> <td>15</td> <td>20</td> </tr> <tr> <td>Methiocarb</td> <td>168</td> <td>153</td> <td>168</td> <td>109</td> <td>153</td> <td>109</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Methomyl</td> <td>105</td> <td>88</td> <td>58</td> <td>31</td> <td>105</td> <td>58</td> <td>5</td> <td>5</td> <td>10</td> </tr> <tr> <td>Methyl parathion</td> <td>263</td> <td>109</td> <td>125</td> <td>79</td> <td>125</td> <td>47</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>MGK 264 I</td> <td>164</td> <td>93</td> <td>164</td> <td>121</td> <td>164</td> <td>77</td> <td>15</td> <td>10</td> <td>30</td> </tr> <tr> <td>MGK 264 II</td> <td>164</td> <td>67</td> <td>164</td> <td>80</td> <td>164</td> <td>98</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Myclobutanil</td> <td>179</td> <td>125</td> <td>150</td> <td>123</td> <td>179</td> <td>90</td> <td>20</td> <td>20</td> <td>30</td> </tr> <tr> <td>Naled</td> <td>145</td> <td>109</td> <td>185</td> <td>93</td> <td>145</td> <td>113</td> <td>10</td> <td>15</td> <td>20</td> </tr> <tr> <td>Oxamyl</td> <td>98</td> <td>58</td> <td>98</td> <td>69</td> <td>72</td> <td>56</td> <td>10</td> <td>5</td> <td>10</td> </tr> <tr> <td>Paclobutrazol</td> <td>236</td> <td>125</td> <td>125</td> <td>89</td> <td>236</td> <td>132</td> <td>20</td> <td>25</td> <td>20</td> </tr> <tr> <td>Permethrin (cis)</td> <td>183</td> <td>153</td> <td>183</td> <td>168</td> <td>183</td> <td>165</td> <td>20</td> <td>20</td> <td>20</td> </tr> <tr> <td>Permethrin (trans)</td> <td>183</td> <td>153</td> <td>183</td> <td>168</td> <td>163</td> <td>91</td> <td>20</td> <td>20</td> <td>15</td> </tr> <tr> <td>Phosmet</td> <td>160</td> <td>133</td> <td>160</td> <td>105</td> <td>160</td> <td>77</td> <td>15</td> <td>20</td> <td>20</td> </tr> <tr> <td>Piperonyl butoxide</td> <td>176</td> <td>117</td> <td>176</td> <td>103</td> <td>176</td> <td>131</td> <td>20</td> <td>25</td> <td>15</td> </tr> <tr> <td>Prallethrin</td> <td>123</td> <td>81</td> <td>123</td> <td>79</td> <td>105</td> <td>77</td> <td>10</td> <td>20</td> <td>15</td> </tr> <tr> <td>Propiconazole I</td> <td>173</td> <td>109</td> <td>173</td> <td>145</td> <td>259</td> <td>191</td> <td>25</td> <td>15</td> <td>10</td> </tr> <tr> <td>Propiconazole II</td> <td>173</td> <td>109</td> <td>173</td> <td>145</td> <td>259</td> <td>191</td> <td>25</td> <td>15</td> <td>10</td> </tr> <tr> <td>Propoxur</td> <td>110</td> <td>63</td> <td>152</td> <td>110</td> <td>110</td> <td>64</td> <td>25</td> <td>10</td> <td>20</td> </tr> <tr> <td>Pyrethrin II</td> <td>133</td> <td>105</td> <td>91</td> <td>65</td> <td>107</td> <td>91</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Pyridaben</td> <td>147</td> <td>117</td> <td>147</td> <td>105</td> <td>147</td> <td>132</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Spiromesifen</td> <td>272</td> <td>254</td> <td>272</td> <td>209</td> <td>272</td> <td>226</td> <td>5</td> <td>15</td> <td>10</td> </tr> <tr> <td>Spiroxamine I</td> <td>100</td> <td>72</td> <td>100</td> <td>58</td> <td>100</td> <td>41</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Spiroxamine II</td> <td>100</td> <td>72</td> <td>100</td> <td>58</td> <td>100</td> <td>41</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Tebuconazole</td> <td>250</td> <td>125</td> <td>125</td> <td>89</td> <td>125</td> <td>99</td> <td>25</td> <td>20</td> <td>20</td> </tr> <tr> <td>Thiamethoxam</td> <td>132</td> <td>71</td> <td>212</td> <td>139</td> <td>212</td> <td>182</td> <td>10</td> <td>15</td> <td>5</td> </tr> <tr> <td>Trifloxystrobin</td> <td>116</td> <td>89</td> <td>172</td> <td>145</td> <td>131</td> <td>89</td> <td>20</td> <td>20</td> <td>25</td> </tr> </tbody> </table> <hr /> <p style="text-align: center;"><img class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/455/Figure%201.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=HetthJu5rq2hGp%2FOyH9XsVYYvl0%3D" style="margin-top: 20px; margin-bottom: 20px;" /></p> <p><strong>Figure 1:</strong> TIC chromatogram</p> <p style="text-align: center;"><img class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/455/Figure%202.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=eIqOHtxWuNoai0WbmfJ8ddgQHJs%3D" style="margin-top: 20px; margin-bottom: 20px;" /></p> <p><strong>Figure 2:</strong> Selected SRM chromatograms</p> <p><img class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/455/Figure%203.png?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=VS2HPisZUKWZKsx3%2B6YPoamRIJE%3D" style="margin-top: 20px; margin-bottom: 20px;" /></p> <p><strong>Figure 3:</strong> Selected calibrations curves</p> <hr /> <p><strong>Table 4:</strong> Performance data for tested pesticides</p> <table class="table"> <tbody> <tr> <th>Compound</th> <th>Range (ppb)</th> <th>Linearity (R<sup>2</sup>)</th> <th>% CV</th> <th>LOQ (ppb)</th> <th>IDL (ppb)</th> </tr> <tr> <td> Azoxystrobin </td> <td> 2.5 - 100 </td> <td> 0.9886 </td> <td> N/A </td> <td> 2.5 </td> <td> N/A </td> </tr> <tr> <td> Bifenazate </td> <td> 1- 100 </td> <td> 0.9943 </td> <td> 17.23 </td> <td> 2.5 </td> <td> 0.52 </td> </tr> <tr> <td> Bifenthrin </td> <td> 0.25 - 100 </td> <td> 0.9928 </td> <td> 3.36 </td> <td> 0.5 </td> <td> 0.10 </td> </tr> <tr> <td> Boscalid </td> <td> 0.25 - 100 </td> <td> 0.9926 </td> <td> 8.65 </td> <td> 0.5 </td> <td> 0.26 </td> </tr> <tr> <td> Carbaril </td> <td> 2.5 - 100 </td> <td> 0.9893 </td> <td> N/A </td> <td> 25 </td> <td> N/A </td> </tr> <tr> <td> Carbofuran </td> <td> 1- 100 </td> <td> 0.9902 </td> <td> 12.52 </td> <td> 2.5 </td> <td> 0.38 </td> </tr> <tr> <td> Chlordane </td> <td> 1- 100 </td> <td> 0.9975 </td> <td> 11.73 </td> <td> 1 </td> <td> 0.35 </td> </tr> <tr> <td> Chlorfenapyr </td> <td> 1- 100 </td> <td> 0.9959 </td> <td> 11.85 </td> <td> 1 </td> <td> 0.36 </td> </tr> <tr> <td> Chlorpyrifos </td> <td> 0.25 - 100 </td> <td> 0.9944 </td> <td> 4.12 </td> <td> 0.5 </td> <td> 0.12 </td> </tr> <tr> <td> Chlorpyrifos-d10 </td> <td> 2.5 - 100 </td> <td> 0.9944 </td> <td> N/A </td> <td> 2.5 </td> <td> N/A </td> </tr> <tr> <td> Cinerin I </td> <td> 25 - 100 </td> <td> 0.9749 </td> <td> N/A </td> <td> 25 </td> <td> N/A </td> </tr> <tr> <td> Clofentezine </td> <td> 0.5 - 100 </td> <td> 0.9974 </td> <td> 5.20 </td> <td> 1 </td> <td> 0.16 </td> </tr> <tr> <td> Cyfluthrin </td> <td> 0.5 - 100 </td> <td> 0.9808 </td> <td> 5.87 </td> <td> 5 </td> <td> 0.18 </td> </tr> <tr> <td> Cypermethrin </td> <td> 1- 100 </td> <td> 0.9933 </td> <td> 9.93 </td> <td> 10 </td> <td> 0.30 </td> </tr> <tr> <td> Diazinone </td> <td> 0.25 - 100 </td> <td> 0.9954 </td> <td> 6.98 </td> <td> 0.5 </td> <td> 0.21 </td> </tr> <tr> <td> Dichlorvos </td> <td> 0.25 - 100 </td> <td> 0.9964 </td> <td> 7.40 </td> <td> 0.5 </td> <td> 0.22 </td> </tr> <tr> <td> Dimethoate </td> <td> 1- 100 </td> <td> 0.9920 </td> <td> 13.25 </td> <td> 2.5 </td> <td> 0.40 </td> </tr> <tr> <td> Ethoprophos </td> <td> 0.25 - 100 </td> <td> 0.9947 </td> <td> 6.38 </td> <td> 2.5 </td> <td> 0.19 </td> </tr> <tr> <td> Etofenprox </td> <td> 0.25 - 100 </td> <td> 0.9961 </td> <td> 6.60 </td> <td> 2.5 </td> <td> 0.20 </td> </tr> <tr> <td> Etoxazole </td> <td> 2.5 - 100 </td> <td> 0.9947 </td> <td> N/A </td> <td> 2.5 </td> <td> N/A </td> </tr> <tr> <td> Fenoxycarb </td> <td> 0.5 - 100 </td> <td> 0.9947 </td> <td> 5.77 </td> <td> 10 </td> <td> 0.17 </td> </tr> <tr> <td> Fipronil </td> <td> 0.5 - 100 </td> <td> 0.9966 </td> <td> 10.11 </td> <td> 1 </td> <td> 0.30 </td> </tr> <tr> <td> Fludioxonil </td> <td> 0.5 - 100 </td> <td> 0.9935 </td> <td> 9.75 </td> <td> 0.5 </td> <td> 0.29 </td> </tr> <tr> <td> Jasmolin I </td> <td> 5 -100 </td> <td> 0.9904 </td> <td> N/A </td> <td> 25 </td> <td> N/A </td> </tr> <tr> <td> Kresoxim-methyl </td> <td> 0.5 - 100 </td> <td> 0.9958 </td> <td> 9.13 </td> <td> 0.5 </td> <td> 0.27 </td> </tr> <tr> <td> Malathion </td> <td> 0.5 - 100 </td> <td> 0.9909 </td> <td> 11.89 </td> <td> 5 </td> <td> 0.36 </td> </tr> <tr> <td> Metalaxyl </td> <td> 0.5 - 100 </td> <td> 0.9978 </td> <td> 6.39 </td> <td> 2.5 </td> <td> 0.19 </td> </tr> <tr> <td> Methiocarb </td> <td> 1- 100 </td> <td> 0.9925 </td> <td> 15.18 </td> <td> 2.5 </td> <td> 0.46 </td> </tr> <tr> <td> Methomyl </td> <td> 2.5 - 100 </td> <td> 0.9895 </td> <td> N/A </td> <td> 50 </td> <td> N/A </td> </tr> <tr> <td> Methyl parathion </td> <td> 1- 100 </td> <td> 0.9960 </td> <td> 12.10 </td> <td> 5 </td> <td> 0.36 </td> </tr> <tr> <td> MGK 264 </td> <td> 0.5 - 100 </td> <td> 0.9983 </td> <td> 7.06 </td> <td> 0.5 </td> <td> 0.21 </td> </tr> <tr> <td> Myclobutanil </td> <td> 0.25 - 100 </td> <td> 0.9954 </td> <td> 11.00 </td> <td> 0.5 </td> <td> 0.33 </td> </tr> <tr> <td> Naled </td> <td> 10 - 100 </td> <td> 0.9899 </td> <td> N/A </td> <td> 25 </td> <td> N/A </td> </tr> <tr> <td> Paclobutrazol </td> <td> 0.25 - 100 </td> <td> 0.9942 </td> <td> 9.09 </td> <td> 0.5 </td> <td> 0.27 </td> </tr> <tr> <td> Permethrin </td> <td> 1- 100 </td> <td> 0.9957 </td> <td> 16.45 </td> <td> 2.5 </td> <td> 0.49 </td> </tr> <tr> <td> Phosmet </td> <td> 0.5 - 100 </td> <td> 0.9914 </td> <td> 13.01 </td> <td> 1 </td> <td> 0.39 </td> </tr> <tr> <td> Prallethrin </td> <td> 5 -100 </td> <td> 0.9929 </td> <td> N/A </td> <td> 25 </td> <td> N/A </td> </tr> <tr> <td> Propiconazole </td> <td> 0.25 - 100 </td> <td> 0.9948 </td> <td> 12.41 </td> <td> 1 </td> <td> 0.39 </td> </tr> <tr> <td> Propoxur </td> <td> 0.25 - 100 </td> <td> 0.9893 </td> <td> 7.76 </td> <td> 0.5 </td> <td> 0.23 </td> </tr> <tr> <td> Pyridaben </td> <td> 0.5 - 100 </td> <td> 0.9922 </td> <td> 5.22 </td> <td> 0.5 </td> <td> 0.16 </td> </tr> <tr> <td> Spiromesifen </td> <td> 0.5 - 100 </td> <td> 0.9857 </td> <td> 8.88 </td> <td> 1 </td> <td> 0.27 </td> </tr> <tr> <td> Spiroxamine </td> <td> 0.25 - 100 </td> <td> 0.9955 </td> <td> 5.03 </td> <td> 1 </td> <td> 0.15 </td> </tr> <tr> <td> Tebuconazole </td> <td> 0.25 - 100 </td> <td> 0.9951 </td> <td> 9.67 </td> <td> 1 </td> <td> 0.29 </td> </tr> <tr> <td> Thiamethoxam </td> <td> 5 -100 </td> <td> 0.9927 </td> <td> N/A </td> <td> 5 </td> <td> N/A </td> </tr> <tr> <td> Trifloxystrobin </td> <td> 0.5 - 100 </td> <td> 0.9952 </td> <td> 9.32 </td> <td> 1 </td> <td> 0.28 </td> </tr> </tbody> </table>Analysis of Pesticides in a Cannabis sativa Matrixhttps://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/analysis-of-pesticides-in-a-cannabis-sativa-matrixMass Spectrometry (MS)Mon, 30 Mar 2020 16:08:09 GMTJEOL msPrimo and Escrime software provide all of the tools needed to develop optimized methods for target compound quantitation and report generation. In this application note, we describe a sensitive method for analyzing pesticides in Cannabis sativa matrix using the SRM capabilities of our triple quadrupole system.<h3>EXPERIMENTAL</h3> <p>Dried <em>Cannabis sativa</em> flower buds for recreational use were purchased from a local dispensary. Approximately 1 gram of flower was extracted into 10 mL of 90:10 acetonitrile:dimethylacetamide by sonication for 15 minutes. The extract was centrifuged at approximately 2500 rpm for 10 minutes, followed by 10X dilution. One mL of the diluted extract was put through a dSPE cleanup step using Restek Q-sep QuEChERS dSPE Tubes (AOAC 2007.01 method<sup>4</sup>, PN# 26125) and following the provided dSPE instructions. The supernatant was used as the matrix for each sample. Each spiked sample was created by adding 10 μL of prepared pesticide standard to 90 μL of the matrix. Samples were analyzed on the JMS-TQ4000GC using the parameters and SRM channels outlined in Tables 1 - 3 below. Optimal product- and precursor-ion pairs and optimized collision energies for each pesticide were determined using built-in SRM optimization tools. Each sample was run in triplicate with the exception of the 1 ppb samples for which 8 replicates were done to calculate the instrument detection limit (IDL) where possible.</p> <h3>RESULTS</h3> <p>Figure 1 shows the total ion current chromatogram (TICC) with labeled peaks, and Figure 2 shows several selected SRM chromatograms.  Table 4 lists the data acquired for 46 pesticides analyzed by GC-MS/MS analysis. There were 41 pesticides observed at 1 ppb or less, which translates to 10 ppb on the plant. The IDL and %CV were not calculated for samples that could not be observed at 1 ppb.  For samples with isomers (e.g., chlordane), the best performing isomer was used for reporting.  All samples below showed good linearity, even up to 100 ppb.  Example calibration curves are shown in Figure 3.  Although some matrix effects were observed, system performance was generally good with very few pesticides affected by matrix interference.</p> <h3>CONCLUSIONS</h3> <p>The JMS-TQ4000GC is an excellent platform for fast, sensitive analysis of a wide range of pesticides in <em>Cannabis</em> matrix. Using built-in SRM optimization tools, optimal ion transitions and collision energies for each pesticide were determined in the presence of the matrix. The SRM method provided high sensitivity and selectivity, and reduced matrix effects without a complicated extraction method.  Forty-one pesticides were observed at one ppb or lower with good linearity, which translates to ten ppb on the flower and is sufficient to meet the action limits of jurisdictions of interest. </p> <h3>REFERENCES</h3> <ol> <li>United States Drug Enforcement Administration. The Controlled Substances Act <a href="https://www.dea.gov/controlled-substances-act" target="_blank">https://www.dea.gov/controlled-substances-act</a> (accessed Mar 19, 2020).</li> <li>Health Canada. Mandatory cannabis testing for pesticide active ingredients - List and limits <a href="https://www.canada.ca/en/public-health/services/publications/drugs-health-products/cannabis-testing-pesticide-list-limits.html" target="_blank">https://www.canada.ca/en/public-health/services/publications/drugs-health-products/cannabis-testing-pesticide-list-limits.html</a> (accessed Mar 19, 2020).</li> <li>Dodson, L.; Laprade, N. M. The Natalie M. Laprade Maryland Medical Cannabis Commission’s (MMCC) Technical Authority for Medical Cannabis Testing; 2019.</li> <li>Official Methods of Analysis. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. Association of Official Agricultural Chemists: 2007.01.</li> </ol> <h4>Table 1. Gas Chromatograph parameters.</h4> <div> <table class="table"> <tbody> <tr> <th>GC</th> <th>7890B (Agilent)</th> </tr> <tr> <td>Column</td> <td>ZB-5MSPlus, 30.0 m, 0.25 mm i.d., 0.25 µm<br /> (Phenomenex, Cat#:7HG-G030-11)</td> </tr> <tr> <td>Inlet liner</td> <td>Zebron Plus 4 mm Single Taper w/Wool on bottom<br /> (Phenomenex Cat#: AG2-0A11-05)</td> </tr> <tr> <td>Inlet Temp.</td> <td>260°C</td> </tr> <tr> <td>Carrier Gas Type, Flow</td> <td>He, 1.000 mL/min constant flow</td> </tr> <tr> <td>Mode</td> <td>Pulsed Splitless</td> </tr> <tr> <td>Pulsed Pressure, Time</td> <td>206.84 kPa, 0.550 min</td> </tr> <tr> <td>Purge Flow</td> <td>30 mL/min, 1.0 min</td> </tr> <tr> <td>Septum Purge Flow</td> <td>3.0 mL/min</td> </tr> <tr> <td>Saver flow, Time</td> <td>15 mL/min, 5.0 min</td> </tr> <tr> <td>Injection Volume</td> <td>1.0 µL</td> </tr> <tr> <td>Oven Program</td> <td>80°C (0.75 min) → 35°C/min → 190°C → 5°C/min →<br /> 240°C → 20°C/min → 300°C (6 min)</td> </tr> </tbody> </table> <h4>Table 2. Mass Spectrometer parameters.</h4> <table class="table"> <tbody> <tr> <th colspan="2">JMS-TQ4000GC</th> </tr> <tr> <td>Ion Source Temp.</td> <td>250°C</td> </tr> <tr> <td>Interface Temp.</td> <td>300°C</td> </tr> <tr> <td>Ionization Mode</td> <td>EI+, 70 eV, 100 µA</td> </tr> <tr> <td>Measurement Mode</td> <td>SRM, High Sensitivity</td> </tr> <tr> <td>Target Cycle Time</td> <td>Approx. 330 ms</td> </tr> <tr> <td>Acquisition Rate</td> <td>2.778 Hz</td> </tr> <tr> <td>Channel Time</td> <td>20 – 100 ms</td> </tr> <tr> <td>Relative EM Voltage</td> <td>900 V</td> </tr> <tr> <td>Collision Gas</td> <td>N<sub>2</sub>, 10%</td> </tr> </tbody> </table> <h4>Table 3. SRM channel data.</h4> <table class="table table-sm table-responsive"> <tbody> <tr> <th rowspan="3">Compound</th> <th colspan="2">Quantitative ion</th> <th colspan="2">Referenced ion 1</th> <th colspan="2">Referenced ion 2</th> <th colspan="3">Collision Energy</th> </tr> <tr> <td>Precursor</td> <td>Product ion</td> <td>Precursor</td> <td>Product ion</td> <td>Precursor</td> <td>Product ion</td> <td>Quantitative ion</td> <td>Referenced ion 1</td> <td>Referenced ion 2</td> </tr> <tr> <td>ion m/z</td> <td>m/z</td> <td>ion m/z</td> <td>m/z</td> <td>ion m/z</td> <td>m/z</td> </tr> <tr> <td>Acephate</td> <td>136</td> <td>94</td> <td>136</td> <td>42</td> <td>77</td> <td>51</td> <td>10</td> <td>15</td> <td>15</td> </tr> <tr> <td>Azoxystrobin</td> <td>344</td> <td>156</td> <td>388</td> <td>345</td> <td>388</td> <td>360</td> <td>30</td> <td>20</td> <td>10</td> </tr> <tr> <td>Bifenazate</td> <td>258</td> <td>196</td> <td>258</td> <td>199</td> <td>300</td> <td>196</td> <td>15</td> <td>10</td> <td>25</td> </tr> <tr> <td>Bifenthrin</td> <td>181</td> <td>165</td> <td>181</td> <td>166</td> <td>181</td> <td>164</td> <td>30</td> <td>20</td> <td>30</td> </tr> <tr> <td>Boscalid</td> <td>140</td> <td>112</td> <td>140</td> <td>76</td> <td>342</td> <td>140</td> <td>10</td> <td>25</td> <td>20</td> </tr> <tr> <td>Carbaril (decomp)</td> <td>144</td> <td>115</td> <td>144</td> <td>116</td> <td>89</td> <td>63</td> <td>25</td> <td>15</td> <td>15</td> </tr> <tr> <td>Carbaril (intact)</td> <td>144</td> <td>115</td> <td>144</td> <td>116</td> <td>89</td> <td>63</td> <td>25</td> <td>15</td> <td>15</td> </tr> <tr> <td>Carbofuran</td> <td>164</td> <td>149</td> <td>164</td> <td>103</td> <td>149</td> <td>103</td> <td>15</td> <td>25</td> <td>20</td> </tr> <tr> <td>Chlordane (cis)</td> <td>375</td> <td>266</td> <td>373</td> <td>266</td> <td>373</td> <td>264</td> <td>20</td> <td>25</td> <td>25</td> </tr> <tr> <td>Chlordane (trans)</td> <td>373</td> <td>266</td> <td>373</td> <td>264</td> <td>375</td> <td>266</td> <td>25</td> <td>20</td> <td>20</td> </tr> <tr> <td>Chlorfenapyr</td> <td>59</td> <td>31</td> <td>247</td> <td>227</td> <td>59</td> <td>41</td> <td>5</td> <td>15</td> <td>5</td> </tr> <tr> <td>Chlorpyrifos</td> <td>197</td> <td>169</td> <td>199</td> <td>171</td> <td>197</td> <td>134</td> <td>15</td> <td>15</td> <td>25</td> </tr> <tr> <td>Chlorpyrifos-d10</td> <td>200</td> <td>172</td> <td>260</td> <td>167</td> <td>260</td> <td>139</td> <td>20</td> <td>25</td> <td>30</td> </tr> <tr> <td>Cinerin I</td> <td>150</td> <td>108</td> <td>123</td> <td>79</td> <td>123</td> <td>81</td> <td>10</td> <td>20</td> <td>10</td> </tr> <tr> <td>Cinerin II</td> <td>107</td> <td>91</td> <td>121</td> <td>93</td> <td>121</td> <td>77</td> <td>10</td> <td>5</td> <td>25</td> </tr> <tr> <td>Clofentezine</td> <td>137</td> <td>102</td> <td>137</td> <td>75</td> <td>139</td> <td>102</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cyfluthrin I</td> <td>226</td> <td>206</td> <td>206</td> <td>151</td> <td>206</td> <td>150</td> <td>15</td> <td>25</td> <td>25</td> </tr> <tr> <td>Cyfluthrin II</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cyfluthrin III</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cyfluthrin IV</td> <td>226</td> <td>206</td> <td>163</td> <td>127</td> <td>163</td> <td>91</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>Cypermethrin I</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>20</td> </tr> <tr> <td>Cypermethrin II</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cypermethrin III</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Cypermethrin IV</td> <td>163</td> <td>127</td> <td>181</td> <td>152</td> <td>163</td> <td>91</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Diazinone</td> <td>137</td> <td>84</td> <td>199</td> <td>135</td> <td>199</td> <td>93</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>Dichlorvos</td> <td>109</td> <td>79</td> <td>185</td> <td>93</td> <td>79</td> <td>47</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Dimethoate</td> <td>93</td> <td>63</td> <td>87</td> <td>42</td> <td>87</td> <td>46</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Ethoprophos</td> <td>158</td> <td>97</td> <td>158</td> <td>114</td> <td>97</td> <td>79</td> <td>15</td> <td>10</td> <td>20</td> </tr> <tr> <td>Etofenprox</td> <td>163</td> <td>107</td> <td>163</td> <td>135</td> <td>135</td> <td>107</td> <td>20</td> <td>10</td> <td>10</td> </tr> <tr> <td>Etoxazole</td> <td>141</td> <td>113</td> <td>300</td> <td>270</td> <td>204</td> <td>176</td> <td>15</td> <td>30</td> <td>10</td> </tr> <tr> <td>Fenoxycarb</td> <td>116</td> <td>88</td> <td>186</td> <td>157</td> <td>186</td> <td>158</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Fipronil</td> <td>213</td> <td>143</td> <td>367</td> <td>213</td> <td>213</td> <td>178</td> <td>25</td> <td>30</td> <td>20</td> </tr> <tr> <td>Fludioxonil</td> <td>248</td> <td>127</td> <td>248</td> <td>154</td> <td>248</td> <td>182</td> <td>30</td> <td>25</td> <td>20</td> </tr> <tr> <td>Imazalil</td> <td>173</td> <td>145</td> <td>215</td> <td>173</td> <td>173</td> <td>109</td> <td>20</td> <td>10</td> <td>25</td> </tr> <tr> <td>Jasmolin I</td> <td>164</td> <td>109</td> <td>123</td> <td>79</td> <td>123</td> <td>81</td> <td>10</td> <td>20</td> <td>10</td> </tr> <tr> <td>Jasmolin II</td> <td>121</td> <td>93</td> <td>121</td> <td>77</td> <td>121</td> <td>91</td> <td>10</td> <td>20</td> <td>20</td> </tr> <tr> <td>Kresoxim-methyl</td> <td>116</td> <td>89</td> <td>206</td> <td>116</td> <td>206</td> <td>131</td> <td>20</td> <td>10</td> <td>10</td> </tr> <tr> <td>Malathion</td> <td>127</td> <td>99</td> <td>93</td> <td>63</td> <td>125</td> <td>79</td> <td>10</td> <td>10</td> <td>15</td> </tr> <tr> <td>Metalaxyl</td> <td>206</td> <td>132</td> <td>132</td> <td>117</td> <td>206</td> <td>105</td> <td>20</td> <td>15</td> <td>20</td> </tr> <tr> <td>Methiocarb</td> <td>168</td> <td>153</td> <td>168</td> <td>109</td> <td>153</td> <td>109</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Methomyl</td> <td>105</td> <td>88</td> <td>58</td> <td>31</td> <td>105</td> <td>58</td> <td>5</td> <td>5</td> <td>10</td> </tr> <tr> <td>Methyl parathion</td> <td>263</td> <td>109</td> <td>125</td> <td>79</td> <td>125</td> <td>47</td> <td>15</td> <td>10</td> <td>15</td> </tr> <tr> <td>MGK 264 I</td> <td>164</td> <td>93</td> <td>164</td> <td>121</td> <td>164</td> <td>77</td> <td>15</td> <td>10</td> <td>30</td> </tr> <tr> <td>MGK 264 II</td> <td>164</td> <td>67</td> <td>164</td> <td>80</td> <td>164</td> <td>98</td> <td>10</td> <td>25</td> <td>15</td> </tr> <tr> <td>Myclobutanil</td> <td>179</td> <td>125</td> <td>150</td> <td>123</td> <td>179</td> <td>90</td> <td>20</td> <td>20</td> <td>30</td> </tr> <tr> <td>Naled</td> <td>145</td> <td>109</td> <td>185</td> <td>93</td> <td>145</td> <td>113</td> <td>10</td> <td>15</td> <td>20</td> </tr> <tr> <td>Oxamyl</td> <td>98</td> <td>58</td> <td>98</td> <td>69</td> <td>72</td> <td>56</td> <td>10</td> <td>5</td> <td>10</td> </tr> <tr> <td>Paclobutrazol</td> <td>236</td> <td>125</td> <td>125</td> <td>89</td> <td>236</td> <td>132</td> <td>20</td> <td>25</td> <td>20</td> </tr> <tr> <td>Permethrin (cis)</td> <td>183</td> <td>153</td> <td>183</td> <td>168</td> <td>183</td> <td>165</td> <td>20</td> <td>20</td> <td>20</td> </tr> <tr> <td>Permethrin (trans)</td> <td>183</td> <td>153</td> <td>183</td> <td>168</td> <td>163</td> <td>91</td> <td>20</td> <td>20</td> <td>15</td> </tr> <tr> <td>Phosmet</td> <td>160</td> <td>133</td> <td>160</td> <td>105</td> <td>160</td> <td>77</td> <td>15</td> <td>20</td> <td>20</td> </tr> <tr> <td>Piperonyl butoxide</td> <td>176</td> <td>117</td> <td>176</td> <td>103</td> <td>176</td> <td>131</td> <td>20</td> <td>25</td> <td>15</td> </tr> <tr> <td>Prallethrin</td> <td>123</td> <td>81</td> <td>123</td> <td>79</td> <td>105</td> <td>77</td> <td>10</td> <td>20</td> <td>15</td> </tr> <tr> <td>Propiconazole I</td> <td>173</td> <td>109</td> <td>173</td> <td>145</td> <td>259</td> <td>191</td> <td>25</td> <td>15</td> <td>10</td> </tr> <tr> <td>Propiconazole II</td> <td>173</td> <td>109</td> <td>173</td> <td>145</td> <td>259</td> <td>191</td> <td>25</td> <td>15</td> <td>10</td> </tr> <tr> <td>Propoxur</td> <td>110</td> <td>63</td> <td>152</td> <td>110</td> <td>110</td> <td>64</td> <td>25</td> <td>10</td> <td>20</td> </tr> <tr> <td>Pyrethrin II</td> <td>133</td> <td>105</td> <td>91</td> <td>65</td> <td>107</td> <td>91</td> <td>10</td> <td>15</td> <td>10</td> </tr> <tr> <td>Pyridaben</td> <td>147</td> <td>117</td> <td>147</td> <td>105</td> <td>147</td> <td>132</td> <td>20</td> <td>10</td> <td>15</td> </tr> <tr> <td>Spiromesifen</td> <td>272</td> <td>254</td> <td>272</td> <td>209</td> <td>272</td> <td>226</td> <td>5</td> <td>15</td> <td>10</td> </tr> <tr> <td>Spiroxamine I</td> <td>100</td> <td>72</td> <td>100</td> <td>58</td> <td>100</td> <td>41</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Spiroxamine II</td> <td>100</td> <td>72</td> <td>100</td> <td>58</td> <td>100</td> <td>41</td> <td>10</td> <td>10</td> <td>20</td> </tr> <tr> <td>Tebuconazole</td> <td>250</td> <td>125</td> <td>125</td> <td>89</td> <td>125</td> <td>99</td> <td>25</td> <td>20</td> <td>20</td> </tr> <tr> <td>Thiamethoxam</td> <td>132</td> <td>71</td> <td>212</td> <td>139</td> <td>212</td> <td>182</td> <td>10</td> <td>15</td> <td>5</td> </tr> <tr> <td>Trifloxystrobin</td> <td>116</td> <td>89</td> <td>172</td> <td>145</td> <td>131</td> <td>89</td> <td>20</td> <td>20</td> <td>25</td> </tr> </tbody> </table> </div> <h4>Figure 1. TIC chromatogram.</h4> <div><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/420/image007.gif?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=%2B6P%2BognAd4sIP7fSl96bIQPHFlI%3D" /></div> <h4>Figure 2. Selected SRM chromatograms.</h4> <div><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/420/image009.gif?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=2YbY3%2FQDZPVimm1YuWv1m0HwGIk%3D" /></div> <h4>Figure 3. Selected calibrations curves.</h4> <div><img alt="" class="img-responsive" src="https://jeolusa.s3.amazonaws.com/resources_ai/420/image011.gif?AWSAccessKeyId=AKIAQJOI4KIAZPDULHNL&Expires=2145934800&Signature=wITRAGb2%2FXOwsc2qdgjdY7BaJvE%3D" /></div> <h4>Table 4. Performance data for tested pesticides.</h4> <div> <table class="table"> <tbody> <tr> <th>Compound</th> <th>Range (ppb)</th> <th>Linearity (R^2)</th> <th>% CV</th> <th>LOQ (ppb)</th> <th>IDL (ppb)</th> </tr> <tr> <td>Azoxystrobin</td> <td>0.5 - 100</td> <td>0.9809</td> <td>12.50</td> <td>1</td> <td>0.37</td> </tr> <tr> <td>Bifenazate</td> <td>0.5 - 100</td> <td>0.9815</td> <td>12.18</td> <td>1</td> <td>0.37</td> </tr> <tr> <td>Bifenthrin</td> <td>0.25 - 100</td> <td>0.9928</td> <td>8.37</td> <td>0.5</td> <td>0.25</td> </tr> <tr> <td>Boscalid</td> <td>0.25 - 100</td> <td>0.9902</td> <td>4.77</td> <td>0.5</td> <td>0.14</td> </tr> <tr> <td>Carbaril</td> <td>0.5 - 100</td> <td>0.9952</td> <td>8.10</td> <td>10</td> <td>0.24</td> </tr> <tr> <td>Carbofuran</td> <td>0.5 - 100</td> <td>0.9953</td> <td>8.57</td> <td>0.5</td> <td>0.26</td> </tr> <tr> <td>Chlordane</td> <td>1 - 100</td> <td>0.9974</td> <td>18.13</td> <td>1</td> <td>0.54</td> </tr> <tr> <td>Chlorfenapyr</td> <td>0.5 - 100</td> <td>0.9932</td> <td>13.87</td> <td>1</td> <td>0.42</td> </tr> <tr> <td>Chlorpyrifos</td> <td>0.25 - 100</td> <td>0.9981</td> <td>8.72</td> <td>0.5</td> <td>0.26</td> </tr> <tr> <td>Chlorpyrifos-d10</td> <td>1 - 100</td> <td>0.9967</td> <td>16.81</td> <td>2.5</td> <td>0.5</td> </tr> <tr> <td>Cinerin I</td> <td>25 - 100</td> <td>0.9844</td> <td>N/A</td> <td>25</td> <td>N/A</td> </tr> <tr> <td>Clofentezine</td> <td>0.5 - 100</td> <td>0.9992</td> <td>6.46</td> <td>1</td> <td>0.19</td> </tr> <tr> <td>Cyfluthrin</td> <td>0.5 - 100</td> <td>0.9963</td> <td>6.76</td> <td>0.5</td> <td>0.2</td> </tr> <tr> <td>Cypermethrin</td> <td>1 - 100</td> <td>0.9954</td> <td>6.68</td> <td>2.5</td> <td>0.2</td> </tr> <tr> <td>Diazinone</td> <td>0.25 - 100</td> <td>0.9978</td> <td>9.22</td> <td>0.5</td> <td>0.28</td> </tr> <tr> <td>Dichlorvos</td> <td>0.25 - 100</td> <td>0.9929</td> <td>9.28</td> <td>0.5</td> <td>0.28</td> </tr> <tr> <td>Dimethoate</td> <td>1 - 100</td> <td>0.9918</td> <td>8.10</td> <td>2.5</td> <td>0.24</td> </tr> <tr> <td>Ethoprophos</td> <td>0.25 - 100</td> <td>0.9921</td> <td>8.77</td> <td>1</td> <td>0.26</td> </tr> <tr> <td>Etofenprox</td> <td>0.25 - 100</td> <td>0.9901</td> <td>5.18</td> <td>2.5</td> <td>0.16</td> </tr> <tr> <td>Etoxazole</td> <td>0.5 - 100</td> <td>0.9957</td> <td>7.74</td> <td>0.5</td> <td>0.23</td> </tr> <tr> <td>Fenoxycarb</td> <td>0.5 - 100</td> <td>0.9944</td> <td>10.05</td> <td>5</td> <td>0.3</td> </tr> <tr> <td>Fipronil</td> <td>0.5 - 100</td> <td>0.9929</td> <td>10.20</td> <td>1</td> <td>0.31</td> </tr> <tr> <td>Fludioxonil</td> <td>0.25 - 100</td> <td>0.9936</td> <td>10.46</td> <td>0.5</td> <td>0.31</td> </tr> <tr> <td>Imazalil</td> <td>1 - 100</td> <td>0.9787</td> <td>20.72</td> <td>1</td> <td>0.62</td> </tr> <tr> <td>Jasmolin I</td> <td>2.5 - 100</td> <td>0.9937</td> <td>N/A</td> <td>25</td> <td>N/A</td> </tr> <tr> <td>Kresoxim-methyl</td> <td>0.5 - 100</td> <td>0.9975</td> <td>9.49</td> <td>0.5</td> <td>0.28</td> </tr> <tr> <td>Malathion</td> <td>0.25 - 100</td> <td>0.9961</td> <td>8.78</td> <td>2.5</td> <td>0.26</td> </tr> <tr> <td>Metalaxyl</td> <td>0.5 - 100</td> <td>0.9975</td> <td>7.90</td> <td>2.5</td> <td>0.24</td> </tr> <tr> <td>Methiocarb</td> <td>1 - 100</td> <td>0.9957</td> <td>12.35</td> <td>1</td> <td>0.37</td> </tr> <tr> <td>Methomyl</td> <td>0.25 - 100</td> <td>0.9763</td> <td>24.74</td> <td>0.5</td> <td>0.74</td> </tr> <tr> <td>Methyl parathion</td> <td>0.5 - 100</td> <td>0.9948</td> <td>10.82</td> <td>2.5</td> <td>0.32</td> </tr> <tr> <td>MGK 264</td> <td>0.5 - 100</td> <td>0.9972</td> <td>5.21</td> <td>0.5</td> <td>0.16</td> </tr> <tr> <td>Myclobutanil</td> <td>0.25 - 100</td> <td>0.9923</td> <td>9.30</td> <td>0.5</td> <td>0.28</td> </tr> <tr> <td>Naled</td> <td>25 - 100</td> <td>N/A</td> <td>N/A</td> <td>50</td> <td>N/A</td> </tr> <tr> <td>Paclobutrazol</td> <td>0.25 - 100</td> <td>0.9953</td> <td>14.15</td> <td>0.5</td> <td>0.42</td> </tr> <tr> <td>Permethrin</td> <td>2.5 - 100</td> <td>0.9946</td> <td>N/A</td> <td>2.5</td> <td>N/A</td> </tr> <tr> <td>Phosmet</td> <td>0.5 - 100</td> <td>0.9948</td> <td>8.49</td> <td>0.5</td> <td>0.25</td> </tr> <tr> <td>Prallethrin</td> <td>10 -100</td> <td>0.9952</td> <td>N/A</td> <td>25</td> <td>N/A</td> </tr> <tr> <td>Propiconazole</td> <td>0.5 - 100</td> <td>0.9944</td> <td>8.70</td> <td>0.5</td> <td>0.26</td> </tr> <tr> <td>Propoxur</td> <td>0.25 - 100</td> <td>0.9955</td> <td>9.67</td> <td>0.5</td> <td>0.29</td> </tr> <tr> <td>Pyridaben</td> <td>0.5 - 100</td> <td>0.9952</td> <td>6.66</td> <td>1</td> <td>0.2</td> </tr> <tr> <td>Spiromesifen</td> <td>0.25 - 100</td> <td>0.9934</td> <td>4.98</td> <td>0.5</td> <td>0.15</td> </tr> <tr> <td>Spiroxamine</td> <td>0.25 - 100</td> <td>0.9985</td> <td>7.07</td> <td>2.5</td> <td>0.21</td> </tr> <tr> <td>Tebuconazole</td> <td>0.5 - 100</td> <td>0.9934</td> <td>9.93</td> <td>0.5</td> <td>0.3</td> </tr> <tr> <td>Thiamethoxam</td> <td>1 - 100</td> <td>0.9951</td> <td>9.59</td> <td>1</td> <td>0.29</td> </tr> <tr> <td>Trifloxystrobin</td> <td>0.5 - 100</td> <td>0.9972</td> <td>6.59</td> <td>1</td> <td>0.2</td> </tr> </tbody> </table> </div> Stability in quantitative analysis of residual agricultural chemicals in food by GC-MS/MS - MSTips262https://www.jeolusa.com/RESOURCES/Analytical-Instruments/Documents-Downloads/stability-in-quantitative-analysis-of-residual-agricultural-chemicals-in-food-by-gc-msms-mstips262Mass Spectrometry (MS)Thu, 05 Mar 2020 10:17:38 GMTAs "food safety" is recognized as an increasingly important issue on a global scale, many nations have their own regulations on residual agricultural chemicals in food. In Japan, the positive list system, which was enforced at the end of May 2006, stipulates a uniform standard of 10 ppb as a quantity that is considered safe for human health. Under the positive list system, more agricultural chemicals need to be examined, and as a result, techniques capable of accurately and collectively analyzing residual agricultural chemicals in food are in increasing demand. While mass spectrometry (MS) is known for its high detection sensitivity, MS/MS is becoming the mainstream of pesticide analysis for its superior sensitivity and selectivity. The JMS-TQ4000GC, JEOL’s latest GC-MS/MS, has a unique ion storage/ejection mechanism within the MS/MS collision cell and incorporates new firmware to support MS/MS analysis with up to 36,000 transitions. In this work, we report the stability of 8 pesticides that were added to spinach extract.<h3>Experiment</h3> <p>For the sample, 15 g of spinach was processed by using AOAC 2007.01 extraction method, and the resulting extraction solution was mixed with an 8 component 100 ppb standard solution at 9:1. Table 1 shows the measuring conditions used for the analysis.</p>