

Integrated Analysis of Fatty Acid Methyl Esters using msFineAnalysis Version 2 - Molecular Ion Detection by FI -

Product: JMS-T200GC GC /MS System

Introduction

Electron ionization (EI) is a hard ionization method that is commonly used with gas chromatography mass spectrometry (GC-MS). The mass spectral fragmentation patterns produced by EI are used for library database searches to identify compounds. Conversely, soft ionization methods like field ionization (FI) tend to produce clear molecular ions with minimal fragmentation. When high-resolution MS is used with these ionization techniques, the accurate masses for the fragment ions produced by EI and the molecular ions produced by soft ionization provide an additional dimension of information for the analytes. Combining the exact mass information with the results of conventional library search can enhance the accuracy of identification compared to the use of library search alone.

Fatty acid methyl esters (FAMEs) are crucial for determining the fat content in food. Being environmentally friendly, they are also increasingly used as bio-diesel fuels. Many of the FAMEs are unsaturated with double bonds in the alkyl chains. As the number of double bonds increases (more unsaturation), the EI measurements tend to lack molecular ions. In this work, we measured a standard sample containing multiple FAMEs using EI and FI to detect their molecular ions. The resulting data was further examined by using msFineAnalysis to produce an integrated report for these compounds in which the library database search was combined with the molecular ion exact mass analysis to produce a qualitative identification of these compounds.

Experiment

A commercial 37-component FAMEs standard mixture (Restek, 200-600 ng/ μ L) was used as a sample. Table 1 shows the measurement conditions used for the GC/EI and GC/FI analyses.

Table 1. Measurement conditions

[GC-TOFMS Conditions]									
System	JMS-T200GC (JEOL)								
Ion Source	EI/FI combination ion source								
Ionization mode	El+: 70 eV, 300 μΑ Fl+: -10 kV, 50Ma, Slope mode								
Mass Range	m/z 35-600								
GC column	DB-5MSUI, 30 m x 0.25 mm, 0.25 μm								
Oven temp.	50°C (1 min) → 10°C/min → 140°C → 3°C/min → 260°C (5 min)								
Inlet mode	Split 50:1								

Results and discussions

Figure 1 shows the TICC for the GC/EI and GC/FI measurements. While the sample contains 37 components, there were only 36 peaks observed in each chromatogram. The *cis*-4,7,10,13,16,19-docosahexaenoic acid methyl ester ($C_{23}H_{34}O_2$) and the heneicosanoic acid methyl ester ($C_{22}H_{44}O_2$) coelute with exactly the same retention time (RT) at 38.8 min. However, the FI mass spectrum for this peak showed the molecular ions for each component (Figure 2). Because the JMS-T200GC is always measuring high-resolution mass spectra, these components, which are not quite separated in the chromatogram, can be identified by mass separation.

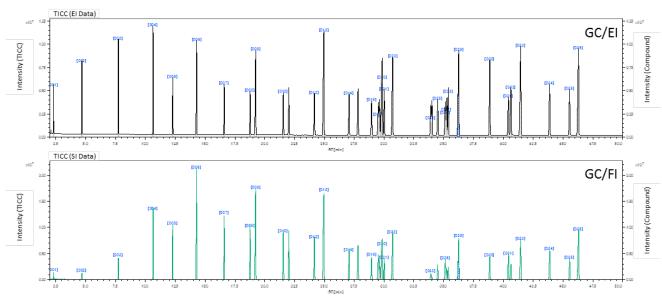


Figure 1. GC/EI and GC/FI total ion current chromatograms for the 37 FAMEs mixture

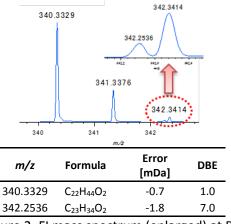


Figure 2. FI mass spectrum (enlarged) at RT 38.8 min and exact mass analysis results

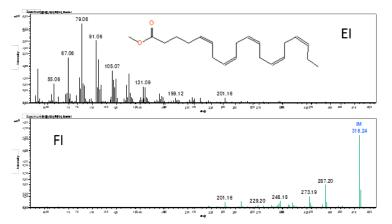
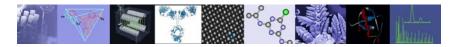



Figure 3. El and FI mass spectra of 5, 8, 11, 14, 17eicosapentaenoic acid methyl ester (all-Z)-

The FI mass spectra show molecular ions for all 37 FAMEs in the mixture. Additionally, these molecular ions are the base peak in each FI mass spectrum except for the 15-tetracosenoic acid methyl ester (Z)-, which is detected at a relative intensity of >80%. All of these results demonstrate that FI ionizes FAMEs softly and efficiently. As an example, Figure 3 shows the EI and FI mass spectra for 5,8,11,14,17-eicosapentaenoic acid methyl ester (all-Z)-, which has 5 double bonds and an alkyl group. In this example, the molecular ion was not observed in the EI mass spectrum, but the molecular ion is the base peak in the FI mass spectrum. Figure 4 shows the FI mass spectra and chemical formulas for 6 components that all have a carbon number of 20 (minus the ester bond) and have 0 to 5 double bonds. Lastly, Table 2 shows the integrated analysis report generated by msFineAnalysis. In each case, the FI molecular ion accurate masses were automatically used to determine the molecular formula for each component in the FAMES mixture to help identify the correct match from the EI library database search.

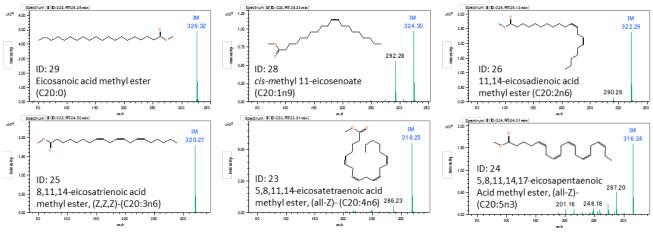


Figure 4. FI mass spectra for the C20 FAMEs

General				Total Result						UbrarySearch Result				
RT (min)	Area	Area (%)	IM m/z	Ubrany Name	CAS#	Similarity	Formula	Calculated m/z	Mass Error [mDa]	BEST Similarity	Ubrany Name	CAS#	Formula	MW
2.29	7,802,029	14.13	102.06850	Butanoic acid, methyl ester	623-42-7	902	C5 H 10 O 2	102.06753	0.97	902	Butanoic acid, methyl ester	623-42-7	C5 H10 O2	102
4.68	12,509,365			Hexanoic add, methyl ester		954		130.09883		954	Hexanolc add, methyl ester	106-70-7	C7 H14 O2	130
7.74	17,836,754	32.30	158.13091	Octanoic add, methyl ester	111-11-5	921	C9 H 18 O 2	158.13013	0.78	921	Octanoic add, methylester	111-11-5	C9 H18 O2	158
10.64	22,872,875		186.16241	Decanoic acid, methyl ester	110-42-9	951		186.16143	0.98	951	Decanoic acid, methyl ester	110-47-9	C11H22O2	186
12.28	13,873,023	25.12	200.17785	Undecanoic acid, methyl ester	1731-86-6	947	C12 H24 O2	200.17708	0.77	947	Undecanoic acid, methyl ester	1731-86-8	C12 H24 O2	200
14.29	28,637,881	51.86	214.19378	Dodecanoic add, methyl ester	111-82-0	924	C13 H 26 O2	214.19273	1.05	924	Dodecanoic acid, methylester		C13 H 26 O 2	
	16,639,305		228.20907	Tridecanoic acid, methyl ester	1731-88-0	962	C14 H28 O2			962	Tridecanoic acid, methyl ester	1731-88-0	C14 H28 O2	228
	15,928,565		240.20818	Methyl myristoleate	56219-06-8	951		240.20838		951	Methyl myristoleate			
	33,711,996			Methyl tetradecanoate	124-10-7						Methyl tetradecanoate	124-10-7		
21.55	16,820,354			Methyl (Z)-10-pentadecenoate	1.1	928		254.22403		928	Methyl (Z)-10-pentadecenoate	-	C16 H30 O2	
22.02	18,711,161	33.88	256.240.22	Pentadecanoic acid, methyl ester	7132-64-1	949	C16 H32 O2	256.23968	0.54	949	Pentadecanoic acid, methyl ester	7132-64-1	C16 H32 O2	256
24.16	17,805,851		268.23913	9-Hexadecenoic acid, methyl ester, (Z)-	1120-25-8			268.23968		942	9-Hexadecenoic acid, methyl ester, (2)-		C17 H32 O2	
	55,221,475			Hexadecanoicacid, methyl ester	112-39-0		C17 H34 Q2	270.25533	0.04	946	Hexadecanoicacid, methyl ester	112:39:0		
27.07	18,586,681			dis-10-Heptadecenoicacid, methyl ester	-	943		282.25533		943	ds-10-Heptadecenoicacid, methyl ester	-	C18 H34 O2	
	20,566,515			Heptadecanoic acid, methyl ester	1731-92-6	933	C18 H36 O2	284.27098	-0.47	933	Heptadecanoicacid, methyl ester	1731-92-6	C18 H36 O2	284
	15,344,971		292.23830	Methyl y linolenate	16326-32-2					945	Methyl y linolenate			
	8,858,244			9,12-Octadecadienoic acid, methylester, (E,E)				294.25533		877	11,14-Octa decadienci cacid, methyl ester			
29.62	8,877,607			9,12, 15-Octa decatrienoic acid, methylester, (Z,Z,Z)-		918		292.23968		918	9,12,15-Octadecatrienoic acid, methyl ester, (Z, Z,Z)-	301-00-8		
	18,365,132		294.25465	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	112-63-0	866	C19 H34 O2	294.25533		866	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	112-63-0	C19 H34 O2	294
29.84	32,367,534		296.26984	9-Octadecenoicacid (Z)-, methyl ester					-1.14	894	9-Octadecenoicacid (Z)-, methyl ester			
	19,095,805		296.27036	9-Octadecenoicacid, methylester, (E)-			C19 H36 O2				trans-13-Octadecenoic add, methyl ester			
30.72	41,648,466			Methyl stearate	112-61-8			298.28663		939	Methyl stearate	112-61-8	C19 H38 O2	
	6,037,723	10.93	318.252.65	5,8,11,14-Eicosatetraenoicacid, methyl ester, (all-Z)-	2 566-89-4		C21 H34 O2	318.2553.3	-2.68	909	5,8,11,14-Eicosatetraenoicacid, methyl ester, (ali-Z)-		C21H34O2	
			316.23636	5,8,11,14,17-Elcosapentaenoicacid, methyl ester, (all-Z)-	2 734-47-6		C21 H32 O2						C21 H32 O2	
34.50	16,559,406			8,11,14-Elcos atrienoic a cid, methylester, (Z,Z,Z)-				320.27098			8,11,14-Elcosatrienoicacid, methyl ester, (Z,Z,Z)-	2 1061-10-9		
35.13	10,403,767			11,14-Eicosadienoicacid, methyl ester	2463-02-7			322.28663		902	cis-11, 14-Eicos adienoic acid, methyl ester	-	C21H38O2	
35.25	9,642,111		320.26997	11,14,17-Eicosatrienoicacid, methyl ester	55682-88-7	861		320.27098		861	11,14,17-Elcos atrieno i cacid, methyl ester	5 5682-88-7	C21 H36 O2	320
35.38	18,118,358			ds-Methyl 11-elcosenoate							ds-Methyl 11-elcosencete	2 390-09-2		
36.25	45,036,437			Elcosanoic add, methyl ester	1120-28-1			326.31793		936	Methyl 18-methylnonadecanoate	-	C21H42O2	
38.86	36,312,501		340.33291	Heneicos anoic acid, methyl ester	6064-90-0			340.33358		781	Heneicos anoi c acid, methyl ester		C22 H44 O2	
40.42	18,929,601		350.31571	ds-13, 16-Docasadienoic acid, methyl ester		947		350.31793		947	ds-13, 16-Docasadienoic acid, methyl ester		C23 H42 O2	350
40.63	22,206,388			13-Docosenoicacid, methyl ester, (Z)-	1120-34-9			352.33358			Methyl 11-docosenoate			
41.44	48,576,846			Docosanoic acid, methyl ester		9.40		354.34923		940	Docosanoic acid, methyl ester	929-77-1		
	25,785,457		368.36379	Tricosanoicacid, methyl ester	2433-97-8	947		368.36488		947	Tricosanoicacid, methyl ester	2433-97-8	C24 H48 O2	368
45.55	23,274,202	42.15	380.36207	15-Tetracosenoic acid, methyl ester, (Z)-	2733-88-2	871	C25 H48 O2	380.3648.8	-2.81	876	15-Tetracosenoic acid, methyl ester	5 6554-33-7	C25 H48 O2	380
46.29	51.225.970	92.76	382,37968	Tetracosanoicacid, methyl ester	2442-49-1	922	C25 H50 O2	382,38053	-0.85	922	Tetracosanoicacid, methyl ester	2442-49-1	C25 H50 O2	387

Conclusions

The msFineAnalysis integrated analysis method produces highly accurate qualitative analysis results for the FAMEs by combining the library search results and molecular formula estimation. This combination of using GC/EI and GC/FI measurements together for qualitative analysis is particularly important for FAMEs as these types of compounds do not produce molecular ions for EI, making it difficult to use database searches alone for identification.

11 Dearborn Road, Peabody, MA 01960 Tel: (978) 535-5900 • Fax: (978) 536-2205 ms@jeol.com • www.jeolusa.com