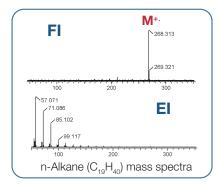


Scientific / Metrology Instruments High Performance Gas Chromatograph – Time-of-Flight Mass Spectrometer

Solutions for Innovation

JMS-T2000GC AccuTOF™ GC-Alpha Petroleum and Petrochemical Solutions

High Resolution, Time-of-Flight Mass Spectrometer


High mass-resolution, which enables differentiation of various classes of hydrocarbons by their exact masses, in combination with soft ionization methods, which enable unambiguous detection of hydrocarbon molecular ions, is an extremely powerful tool for petroleum and petrochemical analyses.

The JMS-T2000GC AccuTOF[™] GC-Alpha is a superior gas chromatograph – high-resolution time-of-flight mass spectrometer (GC-HRTOFMS) system that simultaneously accomplishes high mass-resolution analysis, high mass accuracy, and high-speed data acquisition, satisfying all your needs for petroleum and petrochemical analyses.

The JMS-T2000GC AccuTOF[™] GC-Alpha is the 6th generation of the successful AccuTOF[™] GC series of instruments. Since the introduction of the 1st generation JMS-T100GC AccuTOF[™] GC in 2004, we have installed more than 270 AccuTOF[™] GC series of instruments around the world^{*}, making the AccuTOF[™] GC series the most popular GC-HRTOFMS. * As of April 2021

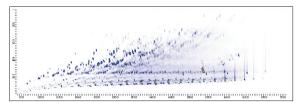
Softest Ionization for Petroleum Samples

Field Ionization (FI) and Field Desorption (FD) are well suited for hydrocarbons analysis because they generate molecular ions for almost all compounds, including saturated hydrocarbons, with minimal fragmentation. The ionization process for these techniques is carried out in a high-potential electric field (~10^s V/cm) that is made between a FI/FD emitter (Anode) and a counter electrode (Cathode). A molecular ion is created within the high-potential electric field by electron tunneling between the analyte molecules and the emitter. The resulting mass spectra are dominated by molecular ions, whether from the GC output (FI) or from the emitter surface (FD).

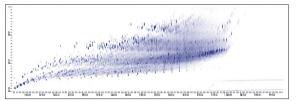
Two Optional Combination Ion Sources: EI/FI/FD and EI/PI

The El/FI/FD combination ion source is a unique accessory that is only offered on the JEOL AccuTOF[™] GC-Alpha system. El and FI/FD modes can be switched by simply exchang-ing the El repeller probe and the FI/FD emitter probe, without breaking vacuum. As a result, both GC/El (or GCxGC/El; see below) and GC/Fl (or GCxGC/Fl) measurements can be done (along with FD) using a single ion source.

Additionally, JEOL offers an El/Photoionization (PI) combination ion source for the AccuTOF[™] GC-Alpha. While FI is still the softest ionization technique available, PI can also be used to generate molecular ions for many analytes, including hydrocarbons. In particular, aromatic hydrocarbons, which strongly absorb UV light, are preferentially ionized with PI, making the technique useful for detecting aromatic hydrocarbons in complex mixtures. In this case, each method is available by turning on the filament for El or the UV lamp for PI. As a result, both GC/El (or GCxGC El) and GC/PI (or GCxGC/PI) measurements can also be done using a single ion source.


Note: use of an EI/FI/FD combination ion source or an EI/PI combination ion source as a substitute of a standard EI ion source for routine analyses is not recommended.

Comprehensive Two-dimensional GC Technique

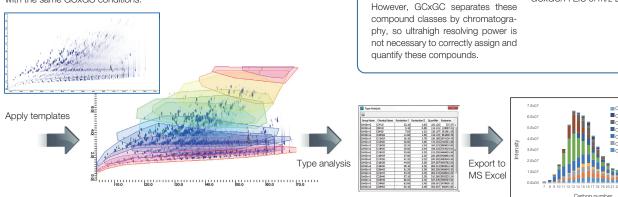

Comprehensive two-dimensional gas chromatography (GCxGC) consists of two different types of columns that are connected via a thermal modulator (Zoex Co.) within the same GC oven. The GCxGC system requires a fast-acquisition detection system to allow for the detection of peaks with very narrow widths in the 2D GC chromatograms. The AccuTOF[™] GC-Alpha has a high-speed data acquisition capability with a spectral acquisition rate of up to 50 Hz (0.02sec/spectrum). Therefore, the AccuTOF[™] GC-Alpha system can be successfully used as a GCxGC detector.

Zoex thermal modulator inside GC oven

GCxGC/FI TICC for a diesel fuel

GCxGC/FI TICC for a crude oil

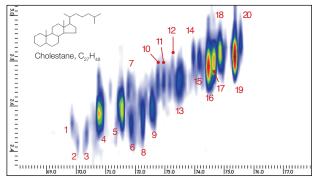
Note: Zoex's GCxGC system is provided and supported through Zoex's sales and support network and may not be available in your territory. Contact your local JEOL representative for detail.



GCxGC/FI Type Analysis

Comprehensive two-dimensional gas chromatography (GCxGC) in combination with high-resolution mass spectrometry (HRMS) is a powerful tool for the analysis of complex mixtures. Field ionization (FI) is a soft ionization technique that is well suited for hydrocarbons analysis because it generates molecular ions for almost all compounds with minimal fragmentation. We can get individual hydrocarbon information (formula, carbon number, intensity) easily from molecular ions which are generated by FI. We do not need to use complex El fragmentation information to carry out type analysis. There are several advantages of GCxGC/FI-HRMS method for detailed type analysis of petroleum samples.

- 1. Fl is ideal for hydrocarbon compounds because it generates abundant molecular ions.
- 2. High selectivity (with narrow m/z windows) allows highprecision extracted ion chromatograms.
- 3. GCxGC provides exceptional separation capacity with 2D structure-retention relationships.


Templates for various hydrocarbon series can be created within GC Image (GC Image, LLC) GCxGC/MS data processing software. Then the templates can be applied to any hydrocarbon data acquired with the same GCxGC conditions

Type analysis templates of 13 hydrocarbon series: $C_nH_{2n+2}, C_nH_{2n}, C_nH_{2n-2}, C_nH_{2n-4}, C_nH_{2n-6}, C_nH_{2n-8}, C_nH_{2n-10},$ C_nH_{2n-12}, C_nH_{2n-14}, C_nH_{2n-16}, C_nH_{2n-18}, C_nH_{2n-20} and C_nH_{2n-22}

Biomarker Analysis

Fragment ions from electron ionization (EI) can cause interferences for biomarker detection. For example, fragments resulting from loss of a methyl group have isotope peaks that can be confused with molecular ions from related compounds. FI solves this problem because it does not produce the fragment ions. We clearly identified 20 isomers of cholestane C₂₇H₄₈ in a crude oil sample by GCxGC/FI. The GCxGC/FI extracted ion chromatograms made it easy to interpret the data and correctly assign the biomarker peaks.

100.00 Intensit 80.0 Relative 60.0 40.0 43 0552 20.0 218,2052 0.0 130.0 230.0 330.0 430.0 30.0 m/z

High selectivity Extracted

Ion Chromatogram (EIC)

row m/z window) for the EIC.

Hydrocarbon peaks that have

the same nominal mass, but

different exact mass, can be

, and

GCxGC/FI EIC of

m/z 184.1253

(C14H16)

C16H12

CnH2n-8

separated completely.

GCxGC/FI EIC of

m/z 184.2192

(C13H28)

C.H.S

M+-372.3766

GCxGC/FI EIC of m/z 204.0939

GCxGC Provides Exceptional Separation

High mass resolution can provide high selectivity (nar-

FI is Ideal for

Hydrocarbon Compounds

FI can generate molecular ions

thus making them easily identifi-

FI mass spectra of n-Alkanes

The AccuTOF™ GC-Alpha has high mass resolution capability, but for

some components. mass separa-

tion can be difficult. For example, the separation between PAHs (C16H12, m/z 204.0939) and Benzothiophenes

(C, H, S, m/z 204.0973) would re-

quire over 180.000 mass resolving

power to separate by mass alone.

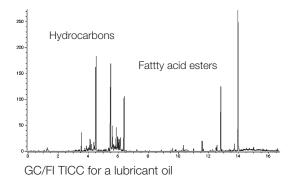
n-C₁₆H₃₄

M

with minimal fragmentation.

able for all hydrocarbons.

M

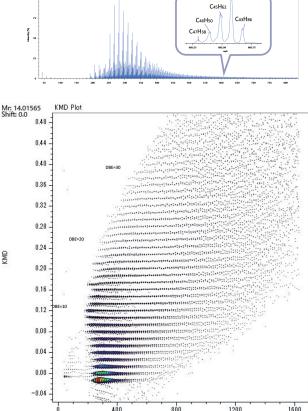

n-C30H62

GCxGC/FI EIC for $\mathrm{C_{27}H_{48}}$ molecular ion in a crude oil

One-dimensional GC/FI

Regular one-dimensional GC/FI measurements are easily carried out using the AccuTOF™ GC-Alpha. In addition to normal-speed GC/FI measure-ments, this system is also capable of doing fast GC measurements, which use short (5-10 m), narrow bore (0.1-0.15 mm I.D.) capillary columns. This fast GC/FI technique allows for the quick determination of molecular ion information for a wide variety of the samples.

Analysis of Crude Oil with FD and msRepeatFinder software


Using the direct inlet FD technique, crude oil that contains high boiling point components can be analyzed.

The msRepeatFinder repeating structure analysis software visualizes a complex mass spectrum as a KMD (Kendrick mass defect) plot. The KMD plot of the FD mass spectrum of the crude oil shows that the isobaric components up to 1,000 Da and DBE (double bond equivalent) up to 30 are clearly resolved with the high mass-resolving power of the AccuTOF™ GC-Alpha. By visualizing hydrocarbons of different degree of unsaturation, analysis and grouping of each series becomes an easy task.

Moreover, by grouping each series, a type analysis calculation can automatically be performed for each group that includes:

- Sum of Intensities
- Number Average Molecular Weight
- Weight Average Molecular Weight

Detailed type analysis is possible by visualizing spectra with KMD plots.

Nominal Kendrick Mass

C44H7

Number Average of Weight Average of polecular weitht(Mw) Formura DBE Sum of Intensities Weighted /erage of KMD Weighted /erage of NKM 1 C_nH_{2n4} 0 2135838 -0.013 309.9 310.2 318.7 1.03 2 $C_n H_{2n}$ 1 1627964 0.001 333.9 334.2 349.6 1.05 З $C_n H_{2n-2}$ 2 1070976 0.014 351.4 351.8 371.5 1.06 4 C.H. З 677938 0.027 376.5 376.5 401.3 1.07 5 $C_{n}H_{2n-6}$ 4 943169 0.041 380.0 380.0 412.4 1.09 391.2 C.H. 5 0.054 391.2 429.7 1.10 6 870604 C_nH_{2n-10} 7 6 706070 0.067 410.3 410.3 456.5 1.11 8 $C_n H_{2n-12}$ 7 694475 0.081 410.2 410.2 466.4 1.14 9 C_nH_{2n-14} 8 764486 0.094 403.4 403.4 473.3 1.17 9 710217 0.108 388.7 388.7 449.2 10 C₀H₂₀₋₁₆ 1.16

Powerful Tools for Analysis

The JMS-T2000GC AccuTOF™ GC-Alpha provides powerful tools for the analysis of petroleum and related products. The system provides highresolution, exact mass data for classical GC/MS analysis with electron ionization. Soft ionization methods are available as options, including chemical ionization (CI) and electron capture negative-ion analysis (ECNI), field ionization (FI), field desorption (FD), and photoionization (PI). All of these methods can be combined with comprehensive two-dimensional gas chromatography (GCxGC) to provide powerful capabilities for complex mixture analysis.

*Specifications subject to change without prior notice.

GC Image is a trdemark of GC Image, LLC. Excel is either a registered trademark or a trademark of Microsoft Corporation in the United States and other countries

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified

KMD

• AUSTRALIA & NEW ZEALAND /JEOL (AUSTRALASIA) Pty.Ltd. Suite 1, L2 18 Aquatic Drive - Frenchs Forest NSW 2086 Australia • BELGIUM /JEOL (EUROPE) B.V. Planet II, Gebouw B Leuvensesteenweg 542, B-1930 Zaventem Belgium • BRAZL /JEOL Brasil Instrumentos Científicos Ltda, Av, Jabaquara, 2958 5° andar conjunto 52; 04046-500 Sao Paulo, SP Brazil • CANADA /JEOL CANADA, INC, 3275 tere Rue, Local #8 St-Hubert, QC J3Y-8Y6, Canada • CHINA /JEOL (BELJING) CO., LTD. Zhongkezjuvan Building South Tower 2F, Zhongguancun Nansanjie Street No. 6, Haidian District, Beijing, P.R.China • EGYPT /JEOL SERVICE BUREAU 3rd FI. Nile Center Bldg., Nawal Street, Dokki, Ociario), Egypt • FRANCE /JEOL (EUROPE) SAS Espace Claude Monet, 1 Allee de Giverny 72820, Croisey-suc-Seine, France • GERMANY) Gomt Houre 398 0536 Freising, Germany • GREAT BRITAIN & IRELAND /JEOL (UK.) TJ. JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT, U.K. • INDIA /JEOL INDIA PVT, LTD, Unit No.305, 3rd Floor, ABW Elegance Tower, Jasola District Centre, New Delhi 110 025, India /JEOL INDIA PVT, LTD, Hyderabad office 422, Regus Solitaire Business centre. 1-10-39 to 44, Jevel 4, Gumidelli Towers, Old Airport Road, Begumpet, Hyderabad - 500016, India • ITALY /JEOL (ITALIA) S.p.A. Palazzo Pacinotti - Milano 3 City, Via Ludovico Illoro, 6/A 20079 Basiglio(MI) Ital) • KOREA JEOL KOREA LTD. Dongwoo Bldg, TF, 1443, Yangia Baero, Gangdong-Gu, Seoul, G355, Korea • MALAYSIA /JEOL (MALAYSIA) SDN.BHD. SoB. Block A, Level 5, Kelana Business Centre, 97, Jalan SS 7/2, Kelana Jaya, 4730 T Petialing Jaya, Selangor, Malaysia • MEXICO /JEOL DE MEXICO S.A. DE C.V. Arkansas 11 Piso 2 Colonia Napoles Delegacion Benito Juarez, C.P. 03810 Mexico D.F., Mexico • QATAR (Mannai Trading Company VLL, ALI Emadi Complex, Salwa Road P,O. Box 76, Doha, Oatar • RUSSIA, JLOC (IRUS) LUC Office 51, Joro 3, 23. Novoslobodskaya 5t, Moscow 127055, Russia • SCANDINAVIA NSWEEDN JEOL (Nordic) AB Hamamatance AB, Box 716, 1912 7 Sollence Sollegaco Role CL ASIA PTELTD. 2 Corporation Road I ltaly • KOHL.. I Petaling Jaya, a Road P.O.Box