

Semi-quantitative Analysis of Low-molecular-weight Cyclic Siloxane in Silicone Rubber via Pyrolysis GC/MS

Product: JMS-Q1500GC GC/MS System

Introduction

Silicone rubber is made from low-molecular-weight (LMW) cyclic siloxane. Most LMW cyclic siloxane is used up during the polymerization process, and the residual cyclic siloxane is removed by subsequent heating and depressurization steps. Generally, the residual level of cyclic siloxane is <3% in silicone rubber, but in the field of electronic equipment manufacturing, residual cyclic siloxane levels must be < 1% in order to avoid contact failure of relays, connectors, etc. due to gases evolved by LMW cyclic siloxane. In this application note, we show semi-quantitative analysis results of LMW cyclic siloxane in silicone rubber that was analyzed using the EGA/PY-3030D pyrolyzer (Py) (Frontier Laboratories, Ltd.) and the gas chromatography—quadrupole mass-spectrometer (GC/QMS) instrument JMS-Q1500GC (JEOL).

Experiment

A silicone rubber septum for a crimp vial was used as a measurement sample, which was weighed at 1 mg. Decamethylcyclopentasiloxane (Si D5) 1000 ng was used as a standard for quantification. Si D5 1000 ng was taken from 10 μ L of Si D5 100ng/ μ L methanol solution using a micro-syringe. Table 1 shows the measurement conditions.

Table 1. TG-MS measurement conditions.

Furnace temp. $80^{\circ}\text{C} \rightarrow 20^{\circ}\text{C/min} \rightarrow 350^{\circ}\text{C} (1 \text{ min})$ Ion source temp. 250°C GC GC Therface temp. 300°C GC column $2B-5MSI$ (Phenomenex, Inc.), $30m \times 0.25$ mm, $0.25 \mu \text{m}$ GC inlet temp. 300°C Relative EM voltage $+200\text{V}$ Oven temp. $40^{\circ}\text{C} \rightarrow 10^{\circ}\text{C/min} \rightarrow 300^{\circ}\text{C} (15 \text{ min})$ Measurement mode $+200\text{V}$ Inlet mode $+200\text{V}$ Carrier gas $+200\text{V}$ Measurement mode $+200\text{V}$ Measurement mode $+200\text{V}$ Measurement mode $+200\text{V}$ The mode $+200\text{V}$ Measurement mode $+200\text{V}$ Measurement mode $+200\text{V}$ Measurement mode $+200\text{V}$ The mode $+200\text{V}$ Measurement mode	Pyrolyser		MS	
GC column ZB-5MSI (Phenomenex, Inc.), $30m \times 0.25 \text{ mm}$, $0.25 \mu \text{m}$ GC inlet temp. 300°C Oven temp. $40^{\circ}\text{C} \rightarrow 10^{\circ}\text{C/min} \rightarrow 300^{\circ}\text{C}$ (15 min) Inlet mode Split 10:1 Measurement mode SCAN Scan range $m/z 50 - 1000$	Furnace temp.	$80^{\circ}\text{C} \rightarrow 20^{\circ}\text{C/min} \rightarrow 350^{\circ}\text{C} (1 \text{ min})$	Ion source temp.	250°C
O.25μmIonization modeEI+. 70 eV, 30μAGC inlet temp. 300° CRelative EM voltage $+200V$ Oven temp. 40° C $\rightarrow 10^{\circ}$ C/min $\rightarrow 300^{\circ}$ C (15 min)Measurement modeSCANInlet modeSplit 10:1Scan range m/z 50 – 1000	GC		Interface temp.	300°C
Oven temp. $40^{\circ}\text{C} \rightarrow 10^{\circ}\text{C/min} \rightarrow 300^{\circ}\text{C} \ (15 \text{ min})$ Measurement mode SCAN Inlet mode Split 10:1 Scan range $m/z \ 50 - 1000$	GC column		Ionization mode	EI+: 70 eV, 50μA
Inlet mode Split 10:1 Scan range m/z 50 – 1000	GC inlet temp.	300°C	Relative EM voltage	+200V
350H Tunge 11000	Oven temp.	$40^{\circ}\text{C} \rightarrow 10^{\circ}\text{C/min} \rightarrow 300^{\circ}\text{C} (15 \text{ min})$	Measurement mode	SCAN
Carrier gas He, 1 mL/min	Inlet mode	Split 10:1	Scan range	m/z 50 – 1000
	Carrier gas	He, 1 mL/min		

Results

Figure 1 shows the total ion current chromatograms (TICCs) for the silicone rubber septum sample (top) and Si D5 standard (bottom). For simple quantification, the sum chromatographic-area values of all LMW cyclic siloxane peaks in the sample were compared with the area value of Si D5 in the standard. As a result, the sample included 0.6 weight percentage (wt%) of Si D3–D10 and 2.0 wt% of Si D11–D20. Since the sample's quantitative value is larger than the residual value required by electrical and electronic equipment manufacturers, the sample is not of high-enough quality for use in electrical and electronic equipment.

These results show that the Py–GC/QMS system is a useful tool for quantitative analysis of impurities and/or additives in polymers.

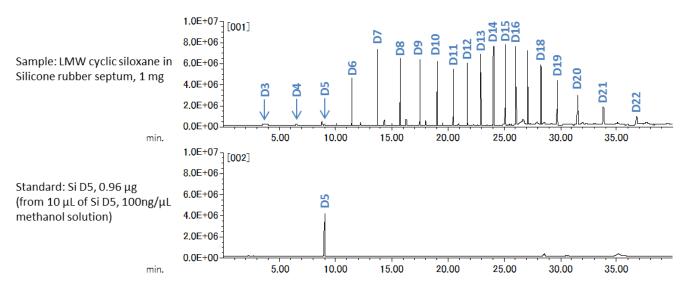


Figure 1. TICCs.

11 Dearborn Road, Peabody, MA 01960

Tel: (978) 535-5900 • Fax: (978) 536-2205

ms@jeol.com • www.jeolusa.com