Analytical and Imaging Solutions for Advanced R&D

MASS SPECTROMETRY

Analysis of Pesticides in Honey Using QuEChERS Extraction and Triple-Quadrupole GC-MS/MS Analysis

1 Introduction

The introduction of pesticides to improve agricultural productivity has led to significant changes in how crops are grown. However, heavy pesticide use has also had some unintended consequences, including to a number of health issues that can have severe consequences for both humans and the environment in general. One particular area of concern is the effect of pesticides on pollinators, such as honeybees. Research suggests that pesticides are adversely affecting honeybee populations and contributing to colony collapse disorder [1, 2]. Honeybees and other pollinators are also an important part of the global economy. According to the American Beekeeping Federation, honeybees contribute approximately \$20 billion to crop production in the USA alone [3]. With these concerns in mind, regulatory agencies all over the world have placed restrictions on the types and levels of pesticides that can be used for agriculture to not only address health concerns for humans, but also for pollinators [4, 5]. In order to monitor pesticide uptake by honeybees, honey should be tested regularly for pesticide content.

Triple-quadrupole gas chromatograph tandem mass spectrometry (GC-MS/MS) is widely used for pesticide analysis due to the sensitivity and specificity of the technique. In particular, the specificity offered by GC-MS/MS is excellent for handling the analysis of samples with complex matrices like honey. In this app note, we demonstrate the ability of the JMS-TQ4000GC to measure the pesticide content of honey samples purchased from local grocers and apiaries. The high sensitivity and specificity offered by selected reaction monitoring (SRM) will be used against a complex honey extract matrix, including matrixmatched standard samples.

2 Experimental

All honey samples were purchased from local grocers and apiaries. Due to their low water content, each sample was prepared by adding 10 grams of water to 5 grams of honey in a 50 mL plastic tube, and heated gently to promote dissolution of the honey into the water prior to extraction [6]. The AOAC 2007.01 QuEChERS method [7] was used as follows to extract the pesticides from the sample and remove interferences: 15

The JEOL JMS-TQ4000GC.

mL of acetonitrile (HPLC grade, Fisher Scientific) was added to each tube. Samples were spiked with 3.75 μ L of 100 ppm chlorpyrifos-d10 (Cambridge Isotope Laboratories, PN# DLM-4360-1.2) as an internal standard to monitor recovery and then extracted using Restek Q-sep QuEChERS extraction salts (PN# 25851). Samples were then centrifuged for 10 minutes.

Eight mL of the supernatant was then extracted by dSPE using Restek Q-sep QuEChERS dSPE Tubes (PN# 26222) by following the provided dSPE instructions. One mL of the resulting supernatant was put through another dSPE cleanup step using Restek (PN# 26125). The dSPE supernatant was either used to create matrix-matched standards, or injected directly into the GC as a sample. For standard samples, the extracted matrix was spiked with stock pesticide standards (Restek PN# 34124 -34129) to concentrations ranging from to 0.1 to 100 ppb.

Samples were analyzed on the JMS-TQ4000GC using the parameters in Table 1. Transitions and collision energies used for each compound are listed in supplementary Table S1. Optimal product- and precursor-ion pairs and optimized collision energies for each pesticide were determined using built-in SRM optimization tools. Each standard and sample were run in triplicate with the exception of the one ppb standard samples, for which ten replicates were done to calculate the instrument detection limit (IDL) where possible.

nt 7890B GC	JMS-TQ4000GC		
ZB5-MSplus	Ion Source Temp.	250 ℃	
30.0 m, 0.25 mm i.d., 0.20 μ m	Interface Temp.	300 ℃	
(Phenomenex, Torrence, CA)	Ionization Mode	EI+, 70 eV, 100 μ A	
4 mm single taper	Measurement Mode	SRM, High	
w/wool on bottom	Target Cycle Time	pprox 330 ms	
(Phenomenex, Torrence, CA)	Channel Time	20 - 100 ms	
250 ℃	Relative EM Voltage	900 V	
He, 1.000 mL/min	Collision Gas	N ₂ , 10 %	
Pulsed Splitless	Oven Program		
206.84 kP, 0.55 min	80 °C (0.7	5 min) $ ightarrow$	
30 mL/min, 1.0 min	35 °C/min $ ightarrow$ 190 °C $ ightarrow$		
3.0 mL/min	5 °C/min $ ightarrow$ 240 °C $ ightarrow$		
2.0 μL	20 °C/min → 330 °C (4 min)		
	ZB5-MSplus 30.0 m, 0.25 mm i.d., 0.20 μ m (Phenomenex, Torrence, CA) 4 mm single taper w/wool on bottom (Phenomenex, Torrence, CA) 250 °C He, 1.000 mL/min Pulsed Splitless 206.84 kP, 0.55 min 30 mL/min, 1.0 min 3.0 mL/min	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

Table 1: GC-MS parameters.

3 Results and Discussion

Figure 1 shows the total ion chromatogram for all measured SRMs at 25 ppb, while Figure 2 shows SRM chromatograms for select pesticides at 5 ppb. Of the 54 pesticides measured, 48 were detected at 5 ppb or less, and instrument detection limits (IDL) of 40 pesticides were less than 1 ppb (Table 2). Calibration curves for selected pesticides are shown in Figure 3. Good linearity (R2 > 0.99) was observed for every pesticide within its dynamic range except for azoxystrobin (R2=0.9844) (Table 2). Chlorinated pesticides, such as cypermethrin and chlordane, which are difficult to measure using LC-MS/MS, were easily measured using the TQ4000GC.

Data for honey samples purchased from local grocers and apiaries are shown in Figure 4 and Table 3. Generally, recoveries were poor compared to other applications of QuEChERS to food products, but it is likely that adding the second dSPE step significantly affected the recoveries. The appearance of clofentezine in every sample is interesting; even honey from a national distributer contained approximately 2 ppb of clofentezine (Figure 4). Research by Bahreini et al. suggests it could be used to control Varroa mite populations in beehives [8]; however, clofentezine can also kill bees in high enough concentrations. More concerning is that carbaril, which is highly toxic to bees [9, 5], was also found in all samples.

Small amount of the fungicides myclobutanil, paclobutrazole, and tebuconazole were found in several samples. Due to such low concentrations of these analytes, poor peak shape and IQ ratios prevented the quantitation of these pesticides. A few other pesticides were also detected in some of the honey samples, but most of them were at concentrations that could not be quantified accurately. Very little difference was found between the nationally distributed honey (Brands E & F), and honey purchased from local apiaries. Both Brands E & F did contain detectable amounts of carbofuran as well as select samples from other apiaries. Carbofuran is also highly toxic to bees [9].

4 Conclusions

The performance of the JMS-TQ4000GC triple quadrupole mass spectrometer was tested for measuring pesticides in extracted honey samples. Of the 54 pesticides measured, 48 were observed at 5 ppb or less in matrix-matched standard samples, and 40 had IDLs < 1 ppb. Calculated linearity and IDLs also showed good performance. Chlorinated pesticides, which can be difficult to measure using LC-MS/MS, were easily measured using GC-MS/MS.

Additionally, honey samples were purchased from local grocers and apiaries, and analyzed using methods mentioned above. Clofentezine was detected in every sample, though for honeybees, its toxicity has been rated as low. Carbaril, which is considered highly toxic to honeybees, was also found in all samples and is a matter of concern. Very few differences were observed between nationally distributed honey and honey purchased from local apiaries. The results above show that the JMS-TQ4000GC can perform at the low ppb level for many pesticides when analyzing complex, real-world samples such as honey. Due to its sensitivity and selectivity, the JMS-TQ4000GC could be a valuable addition to any food lab conducting pesticide testing.

References

- Jim Frazier et al. "Pesticides and Their Involvement in Colony Collapse Disorder". In: *American Bee Journal* 151.8 (2011), pp. 779–784.
- [2] Maryann Frazier et al. What have pesticides got to do with it? 2008. URL: http://www.scopus.com/ inward/record.url?scp=46049093375%7B%5C& %7DpartnerID=8YFLogxK%20http://www.scopus. com/inward/citedby.url?scp=46049093375%7B%5C& %7DpartnerID=8YFLogxK.

- [3] Pollination Facts. URL: https://www.abfnet.org/page/ PollinatorFacts (visited on 03/18/2021).
- [4] "Tolerances and Exemptions for Pesticide Chemical Residues in Foods". In: *Federal Code of Regulations* Part 180.Subpart C (2014), §180.378.
- [5] Louisa Hooven, Ramesh R. Sagili, and Erik Johansen. *How to Reduce Bee Poisoning from Pesticides.* Tech. rep. Pacific Northwest Extension, 2016, p. 35.
- [6] Jana Rousova. QuEChERS approach optimization for low-moisture matrices - case of honey and brown rice flour. URL: https://www.restek.com/ en/chromablography/chromablography/quechersapproach - optimization - for - low - moisture -

matrices--case-of-honey-and-brown-rice-flour/
(visited on 12/15/2020).

- [7] AOAC Official Methods of Analysis. *Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate*. 2007.01.
- [8] Rassol Bahreini et al. "Evaluation of potential miticide toxicity to Varroa destructor and honey bees, Apis mellifera, under laboratory conditions". In: *Scientific Reports* 10.1 (2020), p. 21529. ISSN: 2045-2322. DOI: 10.1038/s41598-020-78561-2. URL: https://doi.org/10.1038/s41598-020-78561-2.
- [9] "Environmental Hazards". In: *Label Review Manual*. Environmental Protection Agency, 2012. Chap. 8, p. 14.

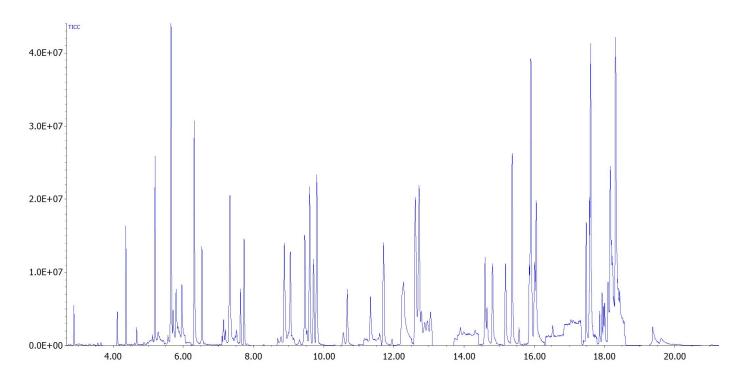


Figure 1: Total ion chromatogram of honey matrix spiked with 25 ppb pesticide standards.

JEOL USA, Inc. • 11 Dearborn Road • Peabody, MA 01960 • 978.535.5900 • www.jeolusa.com

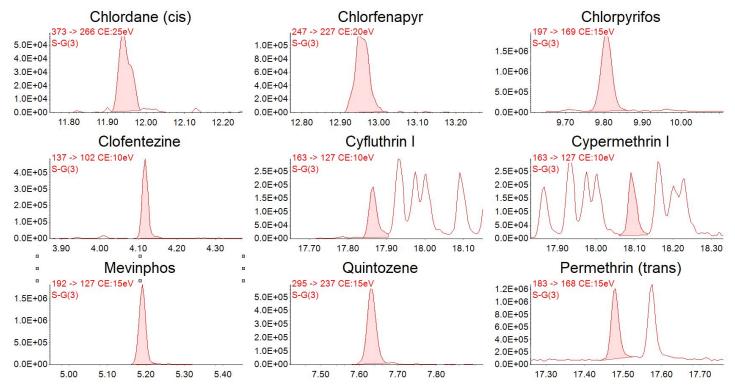


Figure 2: Selected SRM Chromatograms of a 1 ppb matrix-matched standard sample.

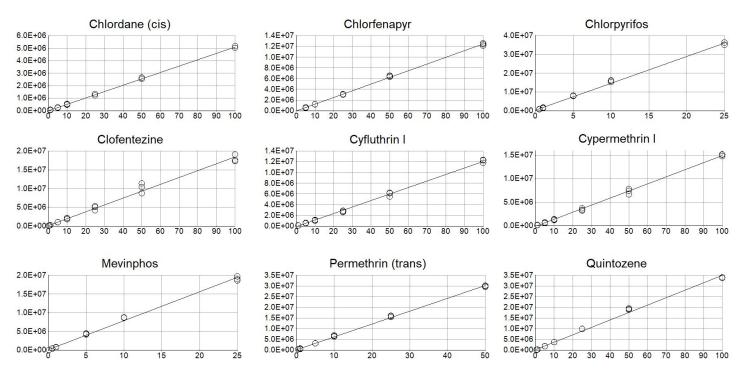


Figure 3: Selected calibrations curves for matrix-matched standard samples.

Table 2: Range, linearity, instrument detection limit (IDL), and CV of pesticide standards measured in spinach matrix.

Compound	Range (ppb)	Linearity R ²	IDL (ppb)	CV (%)
Acephate	25-100	0.9984	N/A	N/A
Aldicarb (decomp)	0.5-100	0.9994	0.46	16.17
Azoxystrobin	25-100	0.9844	N/A	N/A
Bifenazate	1-100	0.9985	0.46	16.38
Bifenthrin	0.1-100	0.9982	0.11	3.76
Boscalid	1-100	0.9982	0.38	13.58
Carbaril	5-100	0.9928	N/A	N/A
Carbofuran	1-100	0.9975	0.19	6.90
Chlorantraniliprole	10-100	0.9910	N/A	N/A
Chlordane	1-100	0.9997	0.69	24.28
Chlorfenapyr	1-100	0.9996	0.37	13.19
Chlorpyrifos	0.5-100	0.9987	0.17	6.03
Chlorpyrifos-d10	0.5-100	0.9995	0.11	3.91
Cinerin	5-100	0.9991	N/A	N/A
Clofentezine	0.1-100	0.9954	0.11	3.80
Coumaphos	5-100	0.9941	N/A	N/A
Cyfluthrin	1-100	0.9990	0.24	8.51
Cypermethrin	1-100	0.9990	0.38	13.42
Diazinone	0.5-100	0.9997	0.10	3.68
Dichlorvos	0.5-100	0.9982	0.13	4.67
Dimethoate	1-100	0.9989	0.29	10.17
Dimethomorph	5-100	0.9967	N/A	N/A
Ethoprophos	0.5-100	0.9998	0.11	3.91
Etofenprox	0.5-100	0.9978	0.15	5.41
Etoxazole	0.5-100	0.9990	0.18	6.40
Fenoxycarb	5-100	0.9963	N/A	N/A
Fipronil	0.5-100	0.9974	0.12	4.37
Fludioxonil	1-100	0.9992	0.12	5.71
Imazalil	5-100	0.9982	N/A	N/A
Jasmolin	10-100	0.9988	N/A	N/A
Kresoxim-methyl	0.5-100	0.9998	0.16	5.77
Malathion	0.5-100	0.9985	0.09	3.33
Metalaxyl	1-100	0.9990	0.20	7.12
Methiocarb	50-100	0.9990	0.20 N/A	N/A
Methomyl	5-100	0.9940	N/A N/A	N/A N/A
Methyl Parathion	1-100	0.9920	0.35	12.55
Mevinphos	0.5-100	0.9990	0.08	2.73
Myclobutanil	0.5-100	0.9981	0.08	2.73 5.50
	N/A	0.9981 N/A	N/A	5.50 N/A
Oxamyl Baalabutrazal				
Paclobutrazol	0.5-100	0.9988	0.15	5.25
Permethrin (trans)	0.5-100	0.9994	0.21	7.52
Phosmet	1-100	0.9966	0.20	7.15
Piperonyl butoxide	0.5-100	0.9983	0.16	5.81
Prallethrin	1-100	0.9991	0.20	6.93
Propiconazole	1-100	0.9996	0.19	6.73
Propoxur	0.5 -100	0.9996	0.14	4.85
Pyrethrin	25-100	0.9840	N/A	N/A
Pyridaben	0.5-100	0.9994	0.14	4.84
Quintozene	0.5-100	0.9997	0.21	7.44
Spiromesifen	1-100	0.9983	0.45	15.82
Spiroxamine	0.5-100	0.9993	0.16	5.58
Tebuconazole	0.5-100	0.9992	0.10	3.51
Thiamethoxam	1-100	0.9943	0.51	18.04
Trifloxystrobin	1-100	0.9992	0.13	4.62

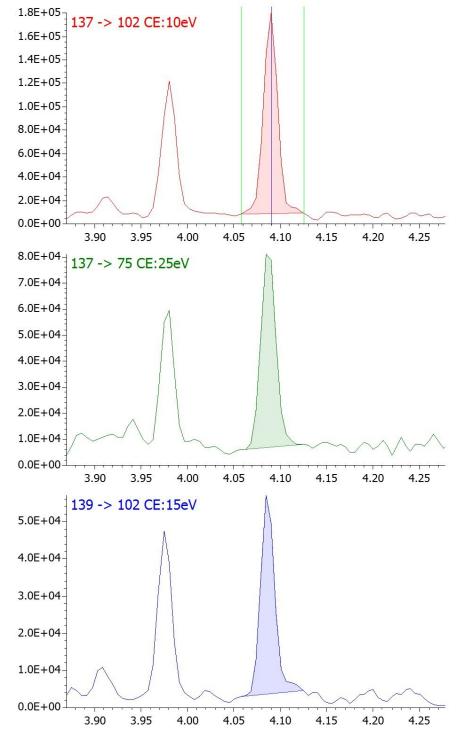


Figure 4: SRM Chromatogram of clofentezine found in Brand E honey. The top chromatogram is the quantitative ion; qualifier ions are shown in the middle and bottom chromatograms.

			Brand A			
Compound	Mountain 1	Mountain 2	Huckleberry	Valley	Clover	Pure comb
Acephate						
Bifenthrin						
Carbaril	5.75	6.68	5.98	5.19	3.98	4.38
Carbofuran						< 0.5
Cinerin II			1.12			
Clofentezine	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	2.77
Dimethomorph	t	t				
Myclobutanil	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1
Paclobutrazol	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5
Piperonyl butoxide	t	t		1.16		< 0.1
Tebuconazole	0.108	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Recoveries (%)	31.7	32.5	32.3	31.4	34.0	71.2

Table 3: Pesticides detected (ppb) in honey samples and sample recoveries.

	Brand B				Brand C		
Compound	Wildflower	Bamboo	Blueberry	Spring	Idaho	Orange	Clover
Acephate					< 0.5		
Bifenthrin					< 0.1	t	
Carbaril	6.63	5.74	6.30	6.63	6.78	4.67	4.68
Carbofuran			t				< 0.5
Cinerin II							
Clofentezine	< 0.1	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	2.32
Dimethomorph	6.51		t				t
Myclobutanil	< 0.1	< 0.1	< 0.5	< 0.1	< 0.5	< 0.1	< 0.5
Paclobutrazol	< 0.1	< 0.1	0.705	< 0.1	< 0.1	< 0.1	< 0.5
Piperonyl butoxide							
Tebuconazole	< 0.1	< 0.1	0.188	< 0.1	< 0.1	< 0.5	< 0.5
Recoveries (%)	33.5	35.4	31.9	33.0	35.5	31.5	59.0

	E	Brand D	Brand E	Brand F
Compound	Agave	Organic Raw	Distrib	Distrib
Acephate				
Bifenthrin				
Carbaril	4.61	4.47	2.58	3.50
Carbofuran	< 0.5	< 0.5	< 0.5	< 0.5
Cinerin II				
Clofentezine	2.69	2.56	2.21	2.07
Dimethomorph				
Myclobutanil	< 0.5	< 0.5	< 0.5	< 0.5
Paclobutrazol	< 0.1	< 0.5	< 0.5	< 0.5
Piperonyl butoxide			2.79	0.478
Tebuconazole	< 0.5	< 0.5	< 0.5	< 0.5
Recoveries (%)	60.5	68.4	67.0	67.8

	Quantitat	ive lon	Qualifier	lon 1	Qualifier	lon 2
	Transition	CE (eV)	Transition	CE (eV)	Transition	CE (eV)
Acephate	136 ightarrow 94	15	125 ightarrow 79	10	$125 \rightarrow 47$	20
Aldicarb (decomposed)	$115 \rightarrow 68$	5	$115 \rightarrow 100$	5	$115 \rightarrow 69$	5
Azoxystrobin	344 ightarrow 156	30	388 ightarrow 345	20	388 ightarrow 300	20
Bifenazate	258 ightarrow 196	15	300 ightarrow 196	20	300 ightarrow 258	10
Bifenthrin	181 ightarrow 165	30	181 ightarrow 166	10	181 ightarrow 164	40
Boscalid	140 ightarrow 112	10	140 ightarrow 76	25	142 ightarrow 114	15
Captan	149 ightarrow 105	5	149 ightarrow 79	15	149 ightarrow 77	25
Carbaril	144 ightarrow 115	20	144 ightarrow 116	15	115 ightarrow 89	20
Carbofuran	164 ightarrow 103	30	164 ightarrow 149	10	149 ightarrow 77	25
Chlorantraniliprole	384 ightarrow 357	20	386 ightarrow 359	15	112 ightarrow 76	15
Chlordane (cis)	373 ightarrow 266	25	375 ightarrow 266	25	371 ightarrow 264	30
Chlordane (trans)	$373 \rightarrow 266$	25	375 ightarrow 266	25	371 ightarrow 264	30
Chlorfenapyr	247 ightarrow 227	20	$247 \rightarrow 200$	30	328 ightarrow 247	25
Chlorpyrifos	197 ightarrow 169	15	199 ightarrow 171	20	314 ightarrow 258	15
Chlorpyrifos-d10	200 ightarrow 172	20	260 ightarrow 167	25	260 ightarrow 139	30
Cinerin I	123 ightarrow 81	10	107 ightarrow 91	10	123 ightarrow 79	20
Cinerin II	107 ightarrow 91	10	121 ightarrow 93	5	167 ightarrow 107	5
Clofentezine	137 ightarrow 102	10	137 ightarrow 75	25	139 ightarrow 102	15
Coumaphos	226 ightarrow 163	15	226 ightarrow 198	10	362 ightarrow 226	15
Cyfluthrin I	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow91	15
Cyfluthrin II	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow91	15
Cyfluthrin III	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow91	15
Cyfluthrin IV	163 ightarrow 127	5	163 ightarrow 91	15	165 ightarrow91	15
Cypermethrin I	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow 91	15
Cypermethrin II	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow91	15
Cypermethrin III	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow91	15
Cypermethrin IV	163 ightarrow 127	10	163 ightarrow 91	15	165 ightarrow 91	15
Diazinone	304 ightarrow 179	15	179 ightarrow 121	35	179 ightarrow 137	20
Dichlorvos	$109 \rightarrow 79$	5	$220 \rightarrow 185$	5	145 ightarrow 109	10
Dimethoate	93 ightarrow 63	10	125 ightarrow 79	10	87 ightarrow 42	10
Dimethomorph I	301 ightarrow 165	10	$303 \rightarrow 165$	10	301 ightarrow 273	10
Dimethomorph II	301 ightarrow 165	10	$303 \rightarrow 165$	10	301 ightarrow 273	10
Ethoprophos	158 ightarrow 97	15	158 ightarrow 81	15	158 ightarrow 114	10
Etofenprox	163 ightarrow 107	25	163 ightarrow 135	10	163 ightarrow 77	35
Etoxazole	141 ightarrow 113	15	300 ightarrow 270	25	$204 \rightarrow 176$	10
Fenoxycarb	116 ightarrow 88	5	255 ightarrow 186	15	186 ightarrow 157	15
Fipronil	367 ightarrow 213	30	351 ightarrow 255	15	369 ightarrow 215	35
Fludioxonil	248 ightarrow 182	15	$248 \rightarrow 154$	15	154 ightarrow 127	10
Imazalil	215 ightarrow 173	10	173 ightarrow 145	20	173 ightarrow 109	30
Jasmolin I	123 ightarrow 81	10	123 ightarrow 79	20	164 ightarrow 109	10
Jasmolin II	107 ightarrow 91	10	121 ightarrow 77	20	121 ightarrow 93	10
Kresoxim-methyl	116 ightarrow 89	15	131 ightarrow 89	25	116 ightarrow 63	25
Malathion	127 ightarrow 99	10	173 ightarrow 99	10	173 ightarrow 117	10
Metalaxyl	160 ightarrow 130	20	160 ightarrow 144	20	160 ightarrow 145	10
Methiocarb	168 ightarrow 109	15	168 ightarrow 153	10	153 ightarrow 109	10
Methomyl	105 ightarrow 88	5	$105 \rightarrow 58$	10	$88 \rightarrow 44$	5
Methyl Parathion	263 ightarrow 109	15	$109 \rightarrow 79$	10	$125 \rightarrow 79$	10
Mevinphos	$192 \rightarrow 127$	15	$127 \rightarrow 109$	10	$127 \rightarrow 79$	20
Myclobutanil	$179 \rightarrow 125$	15	$150 \rightarrow 123$	20	$181 \rightarrow 127$	15
Naled	145 ightarrow 109	10	109 ightarrow 79	5	147 ightarrow 109	10

Table S1: SRM transitions and collision energies for each pesticide.

	Quantitat	ive lon	Qualifier Ion 1		Qualifier Ion 2	
	Transition	CE (eV)	Transition	CE (eV)	Transition	CE (eV)
Oxamyl	162 ightarrow 115	10	162 ightarrow 145	5	145 ightarrow 111	10
Paclobutrazol	$236 \rightarrow 125$	10	125 ightarrow 89	25	$236 \rightarrow 132$	20
Permethrin (cis)	183 ightarrow 168	15	183 ightarrow 153	15	183 ightarrow 165	10
Permethrin (trans)	183 ightarrow 168	15	183 ightarrow 153	15	183 ightarrow 165	10
Phosmet	160 ightarrow 133	15	160 ightarrow 77	20	160 ightarrow 105	20
Piperonyl butoxide	176 ightarrow 131	10	176 ightarrow 145	15	176 ightarrow 161	10
Prallethrin	123 ightarrow 81	5	134 ightarrow 91	10	123 ightarrow 95	5
Propiconazole I	173 ightarrow 145	20	173 ightarrow 109	30	175 ightarrow 147	20
Propiconazole II	173 ightarrow 145	20	173 ightarrow 109	30	175 ightarrow 147	20
Propoxur	110 ightarrow 63	25	152 ightarrow 110	15	110 ightarrow 64	20
Pyrethrin I	123 ightarrow 81	10	105 ightarrow 77	20	123 ightarrow 79	15
Pyrethrin II	160 ightarrow 117	15	107 ightarrow 91	10	133 ightarrow 105	10
Pyridaben	147 ightarrow 117	20	147 ightarrow 115	35	147 ightarrow 119	10
Quintozene	295 ightarrow 237	15	$249 \rightarrow 214$	15	249 ightarrow 179	35
Spiromesifen	272 ightarrow 254	5	$272 \rightarrow 209$	15	272 ightarrow 231	15
Spiroxamine I	100 ightarrow 72	10	100 ightarrow 58	10	100 ightarrow 41	20
Spiroxamine II	100 ightarrow 72	10	100 ightarrow 58	10	100 ightarrow 41	20
Tebuconazole	250 ightarrow 125	20	125 ightarrow 89	20	125 ightarrow 99	20
Thiamethoxam	212 ightarrow 139	10	247 ightarrow 212	5	$247 \rightarrow 182$	10
Trifloxystrobin	116 ightarrow 89	15	131 ightarrow 89	30	$131 \rightarrow 116$	20

Table S1: (continued)