

Comprehensive analysis of human sebum lipids by using GCxGC-HRTOFMS

Introduction

Skin is an active metabolic tissue that synthesizes a variety of complex lipid compounds. Sebum, an oily material secreted by the skin, is known to provide a moisturizing effect, sunlight protection, and antibacterial protection for the skin surface. Sebum consists of a complex mixture of free fatty acids, squalene, cholesterol, wax esters, diacylglycerols and triacylglycerols. These species and their concentrations vary depending on skin conditions.

Lipid compounds are generally measured by using GC–FID, GC–MS or LC–MS. However, these methods are often unable to separate all of the individual compounds under the same measurement conditions. In addition, it can be difficult to definitively identify each lipid compound due to co-elution.

On the other hand, two-dimensional GC - high resolution time-of-flight mass spectrometry (GCxGC– HRTOFMS) is a powerful tool for identifying analytes in complex mixtures such as crude oils. The purpose of this work is the comprehensive detection and identification of lipid compounds in sebum by using GCxGC-HRTOFMS.

Experiment

Samples were collected onto square aluminum sheets (3cm x 3cm) gently wiped across a human forehead for 2 minutes. This was repeated for a total of 3 sheets. The lipid compounds were then extracted with sonication from the aluminum sheets using a 3mL of a 50/50 volume solution of methanol/dichloromethane. Next, the extraction solution was centrifuged and the supernatant was concentrated to 200 μ L. The resulting solution was analyzed using GCxGC–HRTOFMS and the conditions shown in table 1.

- Instruments -	JMS-T200GC " <i>AccuTOF GCx-plus</i> " (JEOL Ltd.) ZX-2 (GCxGC module:ZOEX Corporation)					
- GCxGC conditions -						
Inlet	Cool on column					
Inlet mode	Track Oven					
1 st column	DB-5HT (15 m x 0.25 mm, firm thickness 0.1 μm)					
Modulator loop	Deactivated capillary tube (1.0 m x 0.15 mm)					
2 nd column	Rxi-17Sil MS (1 m x 0.15 mm, firm thickness 0.15 μm)					
Transfer line	Deactivated capillary tube (1.0 m x 0.15 mm)					
Oven temp. program	100°C (1min) => 5°C/min => 360°C (10min)					
Carrier gas flow	2.0 mL/min (He, Constant flow)					
Modulation period	14 sec					
Injection Volume	0.1 μL					
- MS conditions -						
lon source	Dedicated El ion source					
Ionization method	EI(+): 70 eV, 300 μA					
GC Interface temp.	350°C					
lon source temp.	280 °C					
Spectrum recording interval	25 Hz (0.04 sec/spectrum)					
<i>m/z</i> range	$35 \sim 1,000$					

Table 1. Measurement Conditions

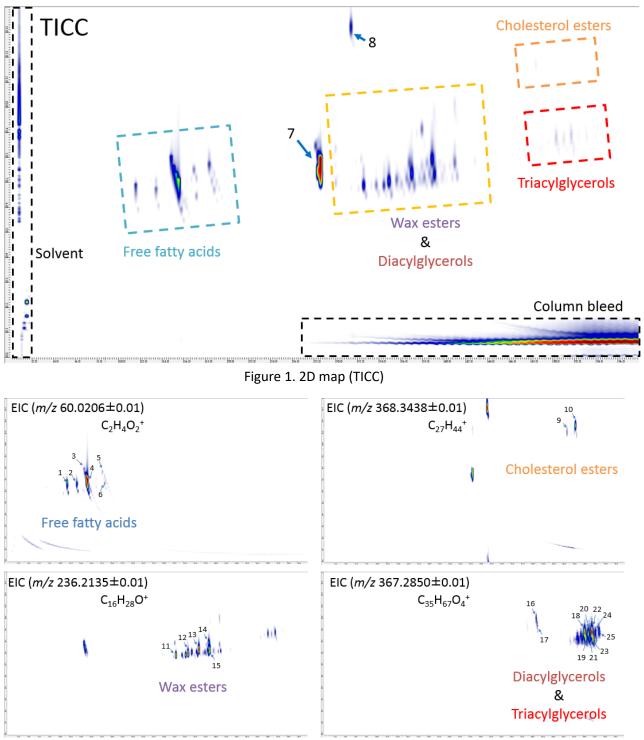


Figure 2. 2D map of EIC (Free fatty acids (Top left), Cholesterol esters (Top right), Wax esters (Bottom left) and Diacylglycerols/Triacylglycerols (Bottom right))

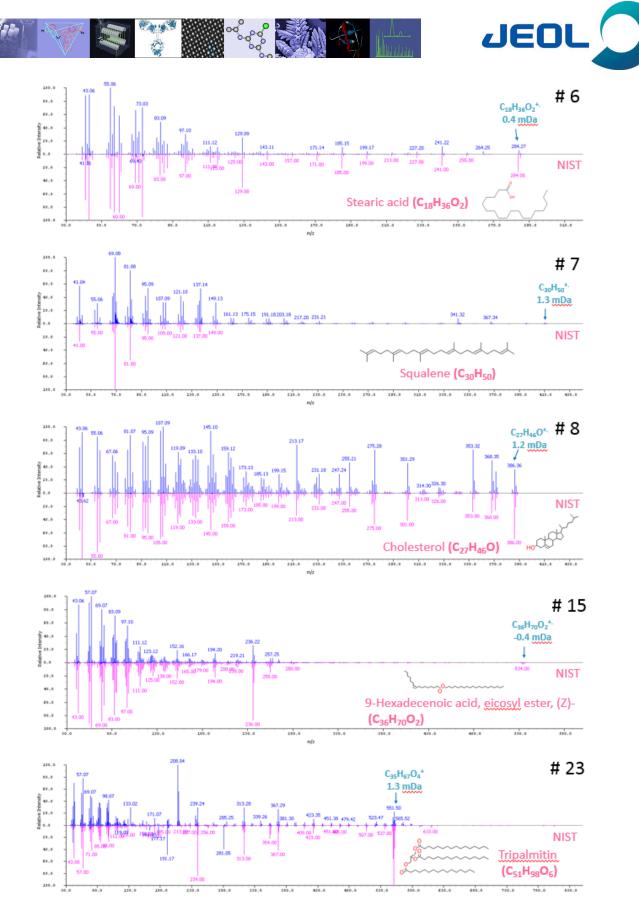


Figure 3. Mass spectra

		RT		NIST results			Exact mass		
Classification	#	1st	2nd	Compound name	Formula	Match factor	Measured <i>m/z</i>	Measured Ions	Error (mDa)
Free fatty acids	1	11.45	6.84	Tetradecanoic acid	$C_{14}H_{28}O_2$	924	228.2100	M⁺·	1.6
	2	13.32	6.67	Pentadecanoic acid	$C_{15}H_{30}O_2$	921	242.2253	M+·	1.2
	3	14.72	8.01	Palmitoleic acid	$C_{16}H_{30}O_2$	922	254.2252	M+·	1.2
	4	15.65	6.55	n-Hexadecanoic acid	$C_{16}H_{32}O_{2}$	870	256.2456	M+·	-1.3
	5	18.22	7.76	cis-Vaccenic acid	$C_{18}H_{34}O_2$	916	282.2563	M+·	0.9
	6	18.68	6.59	Stearic acid	$C_{18}H_{36}O_2$	811	284.2713	M+.	0.4
Squalene	7	28.48	7.63	Squalene	C ₃₀ H ₅₀	889	410.3920	M+·	1.3
Cholesterol	8	31.28	13.26	Cholesterol	C ₂₇ H ₄₆ O	909	386.3555	M+·	1.2
Cholesterol esters	9	46.68	11.18	CHOLEST-5-EN-3-YL PALMITATE	$C_{43}H_{76}O_2$	702	368.3482	C27H44	-1.5
	10	48.32	11.67	CHOLEST-5-EN-3-YL STEARATE	C45H80O2	817	368.3484	C27H44	-1.2
12 Wax esters 13 14	11	32.45	6.76	9-Hexadecenoic acid, tetradecyl ester, (Z)-	C30H58O2	836	450.4417	M+.	1.4
	12	34.78	7.05	9-Hexadecenoic acid, hexadecyl ester, (Z)-	$C_{32}H_{62}O_{2}$	829	478.4809	M*-	0.6
	13	36.88	7.30	9-Hexadecenoic acid, octadecyl ester, (Z)-	$C_{34}H_{66}O_2$	860	506.5053	M*-	-0.4
	14	38.75	7.97	9-Octadecenoic acid (Z)-, 9-octadecenyl ester, (Z)-	$C_{36}H_{68}O_2$	610	532.5218	M+-	0.4
	15	38.98	7.26	9-Hexadecenoic acid, eicosyl ester, (Z)-	C36H70O2	808	534.5370	M+-	-0.4
Diacylglycerols	16	40.85	10.00	1,3-DIPALMITIN	$C_{35}H_{68}O_5$	685	313.2746	$C_{19}H_{37}O_{3}^{+}$	0.9
	17	41.08	8.84	1,2-Dipalmitin	C35H68O5	709	313.2744	C ₁₉ H ₃₇ O ₃ ⁺	0.6
Triacylglycerols	18	50.18	8.63				549.4888	C35H65O4+	1.1
	19	50.42	8.38	3-(Palmitoyloxy)-2-(tetradecanoyloxy)propyl palmitate	C49H94O6	651	551.5039	C35H67O4+	0.5
	20	50.88	8.63				563.5030	C ₃₆ H ₆₇ O ₄ ⁺	-0.4
	21	51.12	8.22				565.5190	C36H69O4+	0.0
	22	51.58	8.59				549.4892	C35H65O4+	1.5
	23	51.82	8.26	Tripalmitin	C ₅₁ H ₉₈ O ₆	625	551.5047	C35H67O4+	1.3
	24	52.28	8.63		51 50-0		577.5205	C ₃₇ H ₆₉ O ₄ ⁺	1.5
	25	52.98	8.72	1.3-DipalmitovI-2-stearin	C53H102O6	495	577.5206	C ₃₇ H ₆₉ O ₄ ⁺	1.6

Table 2. Major Lipid Classes

Figure 1 shows that the TICC 2D map resulted in high chromatographic separation of the six lipid groups corresponding to free fatty acids, squalene, cholesterol/ cholesterol esters, wax esters, diacylglycerols and triacylglycerols. Figure 2 shows that EICs made from group-specific fragment ion masses can clearly separate every compound in each group. Additionally, the lipid compounds in each group were comprehensively identified by HRTOFMS using a combination of accurate mass measurements and library searches. As an example, peak number 6 detected at retention time 18.68 minute (1st column), 6.59 seconds (second column) was matched to stearic acid by using an NIST library search. Furthermore, this mass spectrum showed a molecular ion that coincided with the calculated accurate mass of steric acid (error of 0.4 mDa). The results for other compounds present in the sebum sample are presented in Fig. 3 and table 2.

Conclusion

GCxGC-HRTOFMS has the following advantages for sebum analysis:

- Signal detection from low boiling point fatty acids up to high boiling triglycerides in a single measurement
- High chromatographic separation for cholesterol esters and triacylglycerols which are difficult to separate by 1D GC
- > Comprehensive identification using a combination of accurate mass measurements and library searches

11 Dearborn Road, Peabody, MA 01960 Tel: (978) 535-5900 • Fax: (978) 536-2205 ms@jeol.com • www.jeolusa.com