

2mm HXMAS probe : Multi-use probe capable of high speed MAS and high sensitivity measurements

Product used : Nuclear Magnetic Resonance (NMR)

JEOL 2mm HXMAS probe is a multi-use probe capable of high speed magic angle spinning (MAS) up to 40kHz and high sensitivity measurements. It is not only available for general use in standard ¹³C measurements of organic materials, but also for highly sensitive ¹H indirect detection utilizing high resolution ¹H NMR. Since it is also suitable for ¹⁹F measurements where spinning side bands are likely to appear (JEOL application note: NM18003) and MQMAS measurements of quadrupole nucleus, the 2mm probe is strongly recommended probe that can handle a variety of measurements as a single probe.

3 .2mm	j 2mm] 1mm			1mm	2mm	3.2mm
				Outer diameter	1mm	2mm	3.2mm
				Inner diameter	0.5mm	1.55mm	2.2mm
				Maximum spinning frequency	80,000Hz	40,000Hz	22,000Hz
				Sample volume	0.8µl	17µl	49µl

¹³C sensitivity

The 2mm probe can obtain ¹³C CPMAS spectra with a sensitivity of about 20 to 30% less than the 3.2mm probe although the sample volume is about 1/3. This probe can be used for a daily use of ¹³C measurement and is especially effective for measuring a small amount of sample.

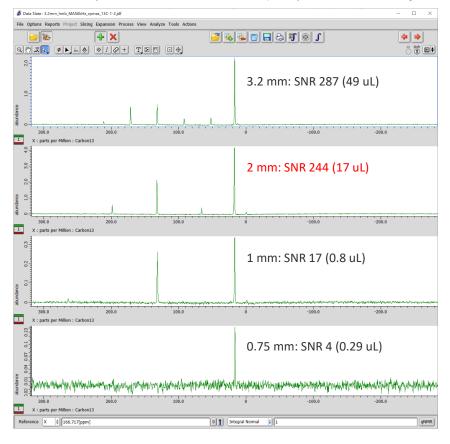


Fig.1 Comparison of ¹³C sensitivity among various probes. ¹³C CPMAS spectra for Hexamethylbenzen (HMB) were obtained using 3.2mm, 2mm, 1mm and 0.75mm HXMAS probes. SNRs were calculated using methyl signals of HMB.

Temperature increase caused by MAS

In solid state MAS measurement, the sample temperature rises due to the friction between the spinning control gas and the sample tube. Since the 2 mm probe can perform MAS more efficiently than the 3.2 mm probe, the rise in sample temperature can be suppressed. For example, 20kHz MAS raises nearly 40 °C in the 3.2mm probe, while it raises only 5 °C in the 2mm probe. The 2mm probe is recommended to obtain a ¹³C spectrum with less spinning sidebands while suppressing the sample temperature rise.

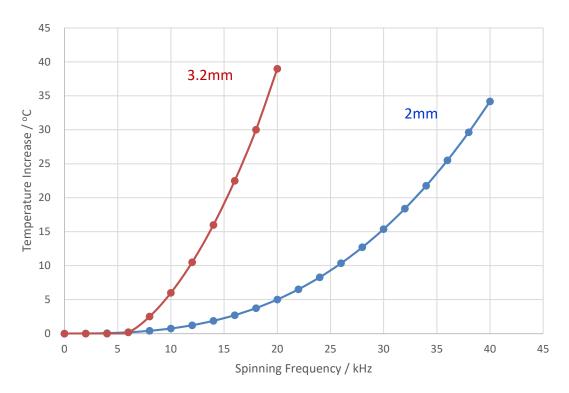


Fig.2 Relation between spinning frequency and temperature increase of samples for 3.2mm and 2mm probes.

JEOL Ltd.

¹H indirect detection

The sensitivities of nuclei with low gyromagnetic ratios can be dramatically improved by ¹H indirect methods owing to high sensitivity and resolution of ¹H at very fast MAS regime. 40kHz MAS achieved by the 2mm probe provides ¹H high resolution and allows to obtain ¹H indirect spectra. Although the sensitivity with the same sample volume is inferior to that of the 1mm probe, actual sensitivity of the ¹H indirect detection using the 2mm probe is much higher because of much larger sample volume. As an example, natural abundance ¹H/¹⁵N CP-based HSQC spectra of cimetidine measured by the 1mm and 2mm probes are shown.

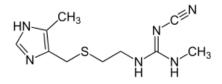


Fig.3. Chemical structure of cimetidine

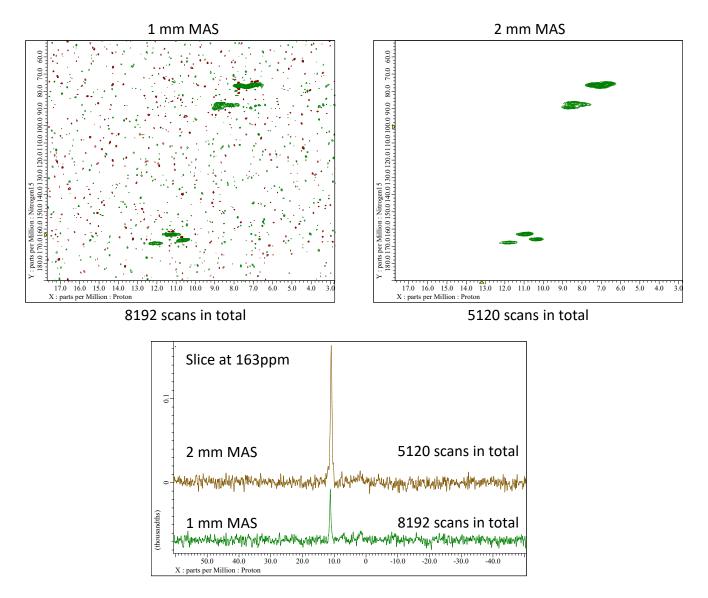


Fig.4 1 H/ 15 N CP-based HSQC 2D spectra of cimetidine obtained by 1mm and 2mm HXMAS probes. 1 H sliced spectra at 15 N 163ppm are also shown.

JEOL Ltd.

MQMAS

JEOL

JEOL Ltd.

The 2mm probe is also useful for MQMAS measurement of quadrupole nuclei. The MQMAS is a representative method for observing quadrupolar nuclei with high resolution, and is widely used because it is available with a standard solid state MAS probe. A strong rf magnetic field strength B_1 , is essential for the MQMAS method because the excitation efficiency of multi-quantum excitation affects the sensitivity of MQMAS measurements. The 2mm probe can apply a stronger B_1 than the conventional 3.2mm probe, enabling highly sensitive MQMAS measurements. Here, we show the ²⁷Al 3QMAS spectra of kyanite (Al₂SiO₅) measured with the 3.2mm and the 2mm probes.

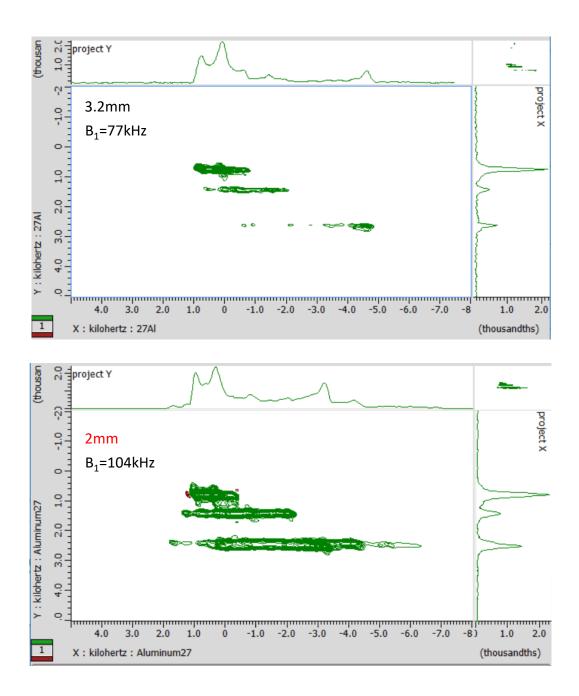


Fig.5 ²⁷Al 3QMAS spectra of kyanite (Al_2SiO_5) obtained by 3.2mm and 2mm HXMAS probes. The rf field strength B_1 of multi-quantum excitation are 77kHz for 3.2mm and 104kHz for 2mm, respectively.

Copyright © 2021 JEOL Ltd.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified

