

Solutions for Innovation

Scientific / Metrology Instruments GC-Quadrupole Mass Spectrometer

JMS-Q1600GC UltraQuad[™]SQ-Zeta

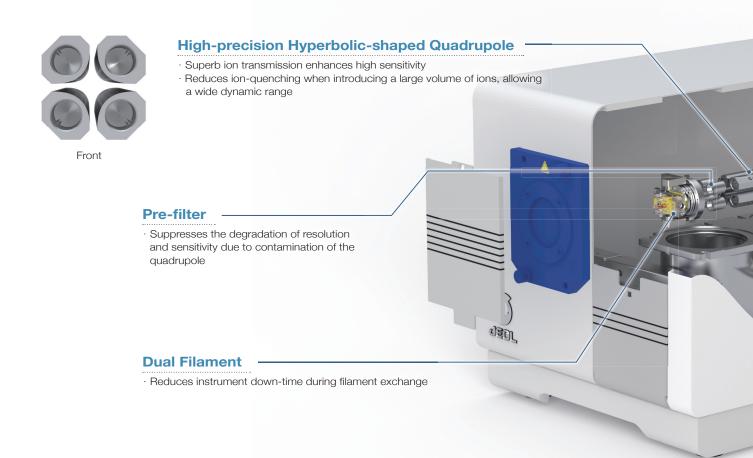


JEOL Ltd.

"Zeta" The 6th generation high-end GC-QMS is finally here!

The new JMS-Q1600GC UltraQuad[™] SQ-Zeta of JEOL is our 6th generation high-end Gas Chromatograph Quadrupole Mass Spectrometer (GC-QMS) based on JEOL's 50 years of MS technologies and experience.

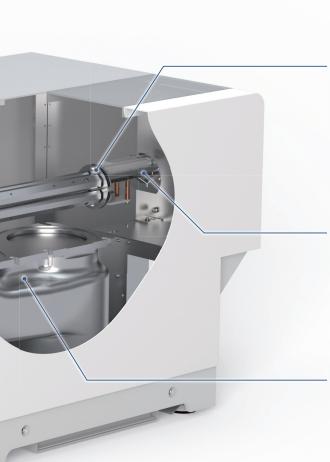
From quantitative applications such as environmental samples, water quality control and agrochemicals, to qualitative applications such as materials and aroma analyses, the SQ-Zeta is the ultimate general-purpose GC-MS with high-performance capabilities for a wide variety of measurement and analysis needs.


Genealogy of Benchtop Quadrupole Mass Spectrometer by JEOL

JEOL mass spectrometer development started with the magnetic sector mass spectrometer JMS-01, which was launched in 1963. In the 1970's, we began doing fundamental research into quadrupole mass spectrometers (QMS). In 1972, JEOL officially launched the JMS-Q10, a high-performance GC-QMS equipped with large-sized quadrupoles (hyperbolic-shaped electrodes). With the launch of JMS-AM Series AUTOMASS in 1989, JEOL made a full-fledged entry into the QMS market. In 2003, JEOL introduced its long-awaited successor GC-QMS, the JMS-K9. The JMS-K9 was equipped with a large-sized hyperbolic-shaped electrode and a high-capacity TMP. This system was built on the concept of the AUTOMASS but upgraded with the latest circuit technology and computer system. Since 2003, the JMS-K9-based system and hardware have been continuously upgraded, leading to the release of the 5th generation GC-QMS into the market (JMS-Q1500GC) in 2016. Now JEOL has introduced the 6th generation GC-QMS, the JMS-Q1600GC UltraQuad™ SQ-Zeta. The SQ-Zeta succeeds the technologies that were cultivated in its predecessors with additional upgraded functionality. The new JMS-Q1600GC UltraQuad™ SQ-Zeta represents a step into the future for all of your GC-QMS analytical needs.

High Performance Advantage Advanced mass spectrometry technologies brought together

The JMS-Q1600GC UltraQuad[™] SQ-Zeta is equipped with the largest hyperbolic-shaped quadrupole in its class. The hyperbolic design allows two features: wide dynamic range from much larger ion volume, and high sensitivity due to superb ion transmission.


No tools required Easy maintenance!

No tools are required to remove or insert the ion source chamber. As with previous models, a large ion source flange is used to ensure ease of access.

1. Remove the cover.

2. Remove the flange.

Draw-in Lens

- · Reduces diffusion of ions from the quadrupole outlet and reduces chemical noises
- · Improved sensitivity by re-acceleration of ions

Secondary Electron Multiplier Detector

 Detector is resistant to degradation in an atmospheric environment to maintain high performance over a long period of time

Split Flow Turbo Molecular Pump

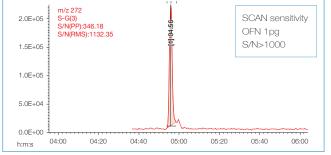
- \cdot Quick evacuation after column replacement and maintenance work
- · Use of mega bore, packed column is possible
- · Compatible with the latest Low-Pressure GC (LPGC) column

3. Turn the screw to release the stopper.

4. Remove the ion source.

5. Remove the chamber from the ion source and clean it.

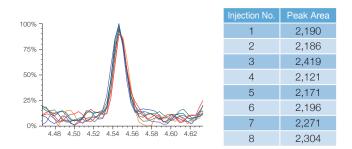
Basic specifications and versatile hardware options for JMS-Q1600GC UltraQuad™ SQ-Zeta

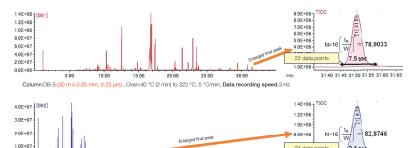

The JMS-Q1600GC UltraQuad[™] SQ-Zeta delivers all of the high performance capabilities required for GC-MS! Additionally, a wide variety of hardware options are available to support your application needs.

JEOL's unique high-precision hyperbolic-shaped quadrupole and **Draw-In Lens achieve high sensitivity!**

The JMS-Q1600GC UltraQuad™ SQ-Zeta is equipped with a multi-layered "Draw-in Lens" before the detector. This lens helps to reduce chemical noise and improve sensitivity by re-accelerating the ions. In addition, the Acquisition Processing Unit (APU) was upgraded to improve the efficiency and speed of data acquisition. With these state-of-theart technologies, the JMS-Q1600GC UltraQuad™ SQ-Zeta is the most advanced GC-QMS system in the market with greatly improved detection sensitivity and SCAN speed.

High sensitivity : SCAN OFN 1pg S/N>1000、SIM : OFN 100fg S/N>500


The standard El ion source offers high sensitivity that is useful for quantitative trace analysis and qualitive analysis.

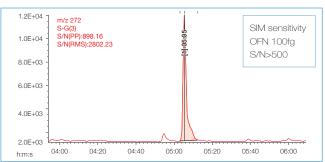

OFN : Octafluoronaphthalene

IDL<5 fg

Eight sequential measurements of 20 fg of octafluoronaphthalene (OFN) were performed by using the standard El ion source. The instrument detection limit (IDL) is calculated based on the peak area and reproducibility of the extracted ion chromatogram for the molecular ion. An IDL of 2.6 fg was achieved for the system.

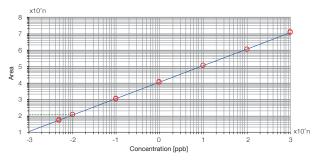
Response to Fast GC : Scan speed 22,222 u/sec

5.00 10.00 15.00 20.00 25.00 30.00 min. Column:DB-5 (10 m x 0.10 mm, 0.10 µm) , Oven:40 °C (2 min) to 320 °C, 16.4 °C/min, Data recording speed:10 Hz Comparison of TICC of aroma oil using conventional GC condition and Fast GC condition (Top: Conventional GC Bottom: Fast GC)


15.00

20.00

2.4 sed


9.72

9.74 9.76 9.78

Wide dynamic range

OFN at concentrations ranging from 0.005 to 1,000 pg/uL were measured by using SIM mode with the standard El ion source. A calibration curve with good linearity was obtained with a coefficient of determination of 0.999 or better. A wide dynamic range of more than 5 orders of magnitude is useful not only for quantitative analysis, but also for qualitative analysis of complex mixtures with different concentrations.

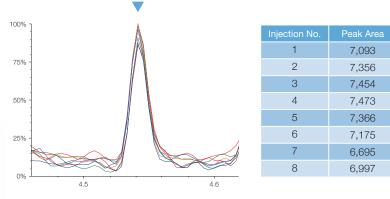
Fast GC is a method that reduces measurement time while maintaining separation capability through the use of fast temperature ramps while using a short GC column with a narrow inner diameter. Because the chromatographic peak width becomes very narrow with Fast GC analysis, the mass spectrometer must have fast data acquisition capabilities.

The JMS-Q1600GC UltraQuad™ SQ-Zeta has a data acquisition and SCAN speed of 22,222 u/sec that is optimal for Fast GC analysis.

The left example shows the measurement results of 0.1 mL (neat) of commercially available aroma oil at a split of 100: 1 under conventional GC conditions and Fast GC conditions. Fast GC reduced the overall measurement to one-third of the analysis time.

Two unique El ion sources Expanded analytical solutions!

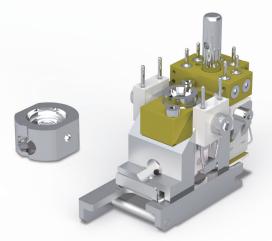
The JMS-Q1600GC UltraQuad[™] SQ-Zeta offers two types of optional El ion sources. The Enhanced Performance Ion Source is a new high sensitivity ion source that enables ultra-trace analyses that were not possible before. The Dense Sample Analysis Ion Source allows the measurement of high concentration samples without dilution while minimizing source contamination.

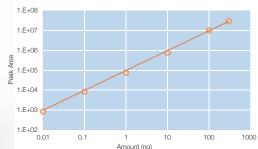

Enhanced Performance Ion Source (EPIS, option) : IDL<1 fg

The EPIS offers the highest in-class sensitivity in the industry with an instrument detection limit of < 1 fg (OFN 5 fg, eight measurements). As a result, the EPIS offers a variety of benefits that include:

- · Trace-level quantitative analysis
- · Simplification of sample concentration analysis, reduction of sample introduction volume (contamination reduction)
- Replacement of quantitative measurement method from SIM to SCAN (simplification of measurement condition, non-target analysis possible).

The EPIS can be utilized not only for quantitative analysis but also qualitative analysis.

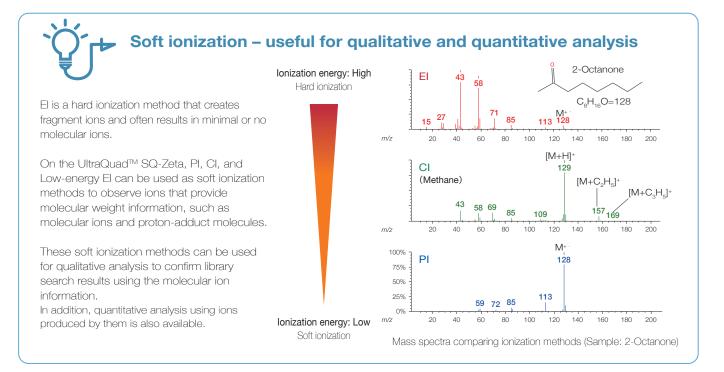



Eight sequential measurements of 5 fg of octafluoronaphthalene (OFN) were performed by using the EPIS ion source.

The instrument detection limit (IDL) is calculated based on the peak area and reproducibility of the extracted ion chromatogram for the molecular ion. An IDL of 0.6 fg was achieved for the system.

Dense Sample Analysis El Ion Source (option) : SCAN OFN 1 pg S/N>20

The Dense Sample Analysis El ion source is designed to reduce the contamination of the ion source and lens by enlarging the ion chamber opening. Additionally, this source has been optimized for measuring high concentration samples, such as volatile organic compounds (VOC) in waste solution, without dilution. This ion source is ideal for extending the dynamic range and linearity of the UltraQuadTM SQ-Zeta to high concentrations with high reproducibility and durability.

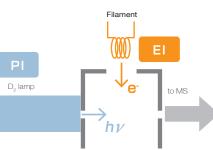


Amount (ng)	Peak Area
0.01	828
0.1	8,190
1	74,607
10	759,032
100	10,052,036
300	29,281,767
Correlation coefficient	0.9998

Linearity up to 300 ng was maintained for p-Bromofluorobenzene used for VOC measurement.

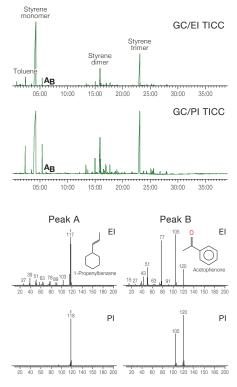
Soft ionization with unique features Widen your analysis capabilities!

With the JMS-Q1600GC UltraQuadTM SQ-Zeta, Photoionization (PI) and Chemical Ionization (CI) are available as soft ionization methods. Moreover, the standard EI ion source enables low-energy EI measurements which reduces the generation of fragment ions by decreasing the ionization voltage from 70 eV down to a range of 10-20 eV.



Photoionization EI/PI Combination Ion Source (option)

Photoionization (PI) is a soft ionization method that uses a vacuum ultraviolet (VUV) lamp. The EI/PI combination ion source allows both EI (Hard ionization) and PI (Soft ionization) without removing the ion source. All that is required for switching between EI and PI is to turn OFF the EI filament and turn ON the PI lamp or vice versa.


Features

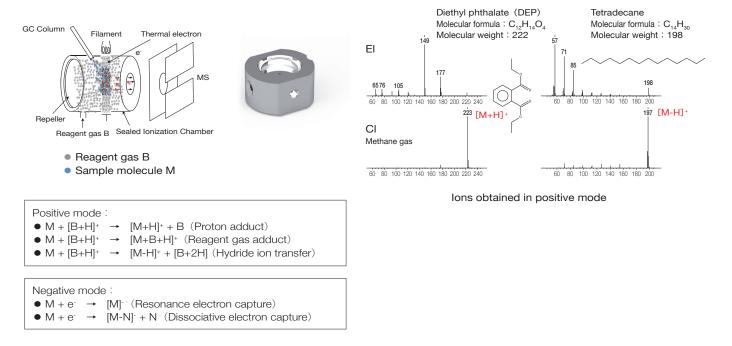
- No need to replace the ion source
- No need to break vacuum
- No need for reagent gases
- Primarily for qualitative analysis

For PI; Lamp: ON, Filament: OFF For EI; Lamp: OFF, Filament: ON Schematic of EI/PI Combination Ion Source

EI/PI

Py/GC-MS measurement result of polystyrene foam

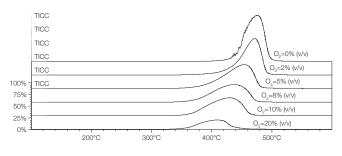
Aromatic hydrocarbons, which strongly absorb UV light, are preferentially ionized by PI, resulting in high sensitivity detection of their molecular ions.


Chemical ionization CI Ion Source (option)

Chemical ionization (CI) is a soft ionization method that produces molecular ion adducts through the reaction of sample molecules with a reagent gas in the ionization region. Methane, isobutane, and ammonia are typically used as the reagent gases.

Additionally, the CI method can be used for both positive- and negative-ion measurements. In general, positive-ion mode is used for qualitative analysis, such as confirmation of molecular weight, while negative-ion mode is commonly used for quantitative analysis of halogen-containing compounds, such as PCBs.

Features


- Need for reagent gas
- > Positive-ion and negative-ion modes possible

Filament for Low Vacuum (option)

JEOL has developed a filament for low vacuum, which can perform stable El measurements even when high amounts of oxygen are present.

This option makes it possible to perform TG measurements in an oxygen-rich atmosphere, in the same way as a synthesis process.

TICC of polystyrene after TG measurement at each oxygen concentration

For each TICC, a peak is generated by the decomposition of polystyrene. As the oxygen concentration increases, the starting temperature of gas generation becomes lower. These results indicate that the thermal decomposition temperature of polystyrene changes with oxygen concentration.

Direct MS Probes (option)

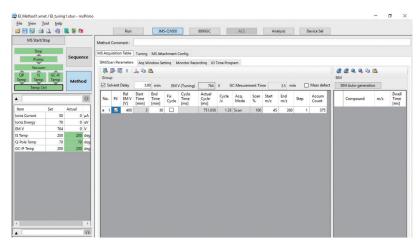
Direct MS probes are useful for measuring high-boiling-point components that are difficult or not possible to inject into a GC. The JMS-Q1600GC UltraQuad[™] SQ-Zeta offers two direct MS probe options.

Each probe is ideal for different types of samples in different physical states.

8

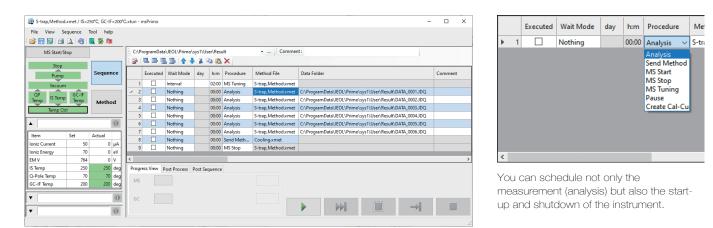
Direct Exposure Probe/F (Direct Exposure Probe: DEP)

- Samples dissolved or dispersed in solvents are applied to a filament at the tip.
- Ideal for high boiling point compounds/thermally labile samples.


Direct Insertion Probe/C (Direct Insertion Probe: DIP)

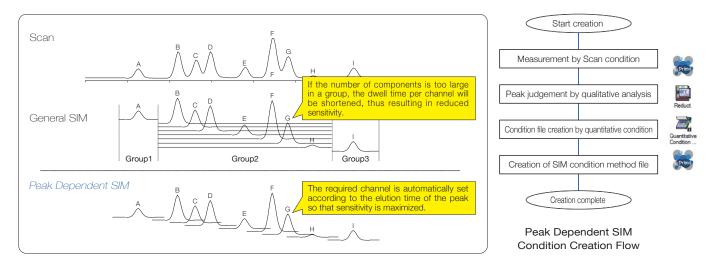

- Solid sample is put in a glass tube for measurement.
- Ideal for high boiling point compounds/samples that are difficult to dissolve in solvent.

User interface designed for ease of use


MSPRIMO[™] is the JEOL GC-QMS control software that was first released with the JMS-Q1500GC. Functions that were previously divided into several windows in earlier software have been consolidated into a single window, making an intuitive and easy-to-use interface.

The status of each instrument parameter is always shown on the left side of the screen for easy confirmation of the instrument status. In addition, you can switch between tuning/calibration, GC method editing, MS method editing, and sequence setting within one window using a tabbed interface.

Capable of linkage among measurement, instrument control and analysis Multi-function Sequence


MSPRIMOTM features a multi-function sequence, allowing for measurement, instrument control, and analysis. Operation start time can also be set, making it possible to freely schedule all sequence items. This helps users manage their daily analytical operations, such as shutdown of the instrument after measurement, tuning at a desired position for sequential measurement, and quantitative analysis of the measured data.

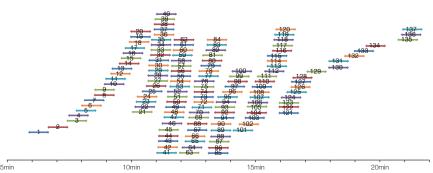
Automatic SIM condition-creation function

Peak Dependent SIM provides easy and high-sensitivity quantitative analysis

The new "Peak Dependent SIM" function simplifies the SIM grouping process by automatically optimizing these groupings based on analyte retention time in order to maximize sensitivity.

The maximum channel number for SIM measurements per 1 group is 100 channels, and the maximum group number is 500 groups.

Pesticide Analysis by Using Peak Dependent SIM (pd-SIM)


Study on the simultaneous analysis of regulated pesticides in drinking water

The figure on the right shows the pd-SIM parameters for all 134 pesticides that are targeted for the Japanese drinking water quality control regulations.

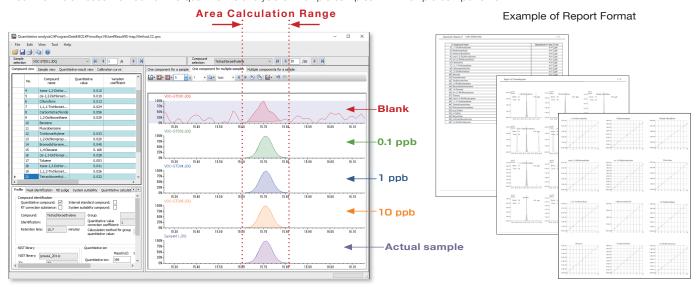
As shown, many components were observed to coelute in the 10-15 minute range. To handle this situation, pd-SIM used a SCAN measurement of the pesticides to automatically set the appropriate channel times for each Q-ion.

Additionally, setting these pd-SIM channels appropriately resulted in improved sensitivity over the traditional general SIM method mentioned previously.

Measurement results were stable for pd-SIM. The coefficient of variation for 5 ppb of pesticides (n=5) was less than 10%, indicating good reproducibility.

pd-SIM conditions (numbers correspond to the compounds in the table below)

#	Name	Q-ion (m/z)	R.T. (min)	C.V. (%)	r -	#	Name	Q-ion (m/z)	R.T. (min)	C.V. (%)	r -	#	Name	Q-ion (m/z)	R.T. (min)	C.V. (%)	- r -
1	Dichlorvos	185	6.14	1.0	0.999	47	Fenitrothion	277	11.61	6.4	0.998	93	Uniconazole p	234	13.69	2.9	0.997
2	Dichlobenil	171	6.92	1.0	0.999	48	Bromacil	205	11.63	2.5	0.998	94	Fenthion oxon sulfone	294	13.74	4.8	0.998
3	Etridiazole	211	7.68	1.4	0.999	49	(e)-dimethylvinphos		11.68	2.2	0.999	95	Buprofezin	105	13.80		0.999
4	Trichlorfon	79	7.76	-	0.989	50	Malathion	127	11.73	4.6	0.999	96	Isoxathion	105	14.00	1.8	0.998
5	Chloroneb	191	8.06	2.2	0.999	51	Chlorpyrifos oxon	270	11.76	4.4	0.996	97	Cyproconazole	222	14.09	1.7	0.998
6	Isoprocarb	121	8.28	3.1	0.998	52	Esprocarb	91	11.76	1.4	0.999	98	(z)-pyriminobac-methyl		14.21	3.4	0.999
7	Molinate	126	8.39	1.3	0.999	53	Quinoclamin	207	11.85	2.2	0.999	99	Fenthion sulfoxide	279	14.28	3.1	0.997
8	Fenobucarb	121	8.80	0.7	0.999	54	Metolachlor	162	11.87	1.8	0.999	100	Fenthion sulfone	310	14.36	2.7	0.999
9	Propoxur	110	8.81	1.4	0.999	55	Chlorpyrifos	197		2.6	0.999	101		195			0.999
10	Trifluralin	306	9.20	4.2	0.999	56	Cyanazine	225	11.91	5.5	0.999	102	Mepronil	119	14.64	1.3	0.998
11	Benfluralin	292	9.25	3.3		57	Thiobencarb	100			0.999		Chlornitrofen	317			
12	Cadusafos	159	9.45	4.9	0.999	58	(z)-dimethylvinphos	295	11.92	2.5	0.998	104	Propiconazole-1	259	14.97	2.1	0.999
13		125			0.999	59	Fenthion		11.95		0.999	105	Edifenphos		14.98		
14	Dimethoate	125	9.80	5.6	0.998	60	Chlorthal-dimethyl	301	11.99	1.3	0.999	106	(e)-pyriminobac-methyl	302	15.01	2.1	0.999
15	Simazine	201	9.88		0.999	61	Isofenphos oxon	229		2.1	0.996	107		259			0.999
16	Atrazine	200	9.95		0.999	62	Tetraconazole	336	12.03		0.999	108	Endosulfan sulfate	272			0.999
17	Diazinon oxon	137			0.997	63	Fthalide	243			0.999	109	Epn oxon		15.18		
18	Cyanofos	243	10.20	1.4	0.999	64	Fosthiazate	195	12.35	5.4	0.997	110		127	15.29	1.3	0.999
19	Propyzamide	173			0.999	65	Pendimethalin	252	12.47	5.6	0.997	111	Tebuconazole	250			0.999
20	Diazinon	179	10.26	1.1	0.999	66	Cyprodinil	224	12.48	1.5	0.999	112		165	15.68		0.998
21	Pyroquilone	173	10.34		0.999	67	Dimethametryn	212		1.3	0.999		Iprodione	314			0.996
22	Chlorothalonil	266	10.43		0.999	68	Thiamethoxam	212	12.56	1.3	0.999		Pyridafenthion		15.78	1.6	0.998
23	Disulfoton	97	10.48	2.1	0.998	69	Isofenphos	213		3.4		115		152			0.999
24	Anthracene-d10	188				70	Methyl daimuron	107	12.75				Epn		15.99		0.998
25	Iprobenfos	91	10.73		0.998	71	Phenthoate	274	12.75	2.7	0.999		Piperophos	122			0.997
26	Tolclofos-methyl oxon.	249	10.90	1.8	0.999	72	Procymidone	283	12.83	0.9	0.999		Cumyluron	267	16.05	14.5	0.999
27	Fenitrothion oxon	244				73	Captan	79	12.83		0.998	_	Chrysene-d12	240		\leq	\sim
28	Benfuresate	256	10.96	3.5	0.999	74	Triflumizole	278	12.84	5.3	0.998	120	Orysastrobin	205	16.14		0.997
29	Dichlofenthion	279			0.999	75	Butamifos oxon	244	12.85		0.998	121		226			0.998
30	Propanil	161	11.00	3.7	0.999	76	Dimepiperate	119	12.86	1.5	0.999	122		341	16.27	8.6	0.997
31	Terbucarb	205			0.999	77	Methidathion	145	13.02		0.998	123		174			0.999
32	Metribuzin	198	11.07	2.2	0.999	78	Propaphos	220	13.04	3.8	0.998	124		157	16.36	1.4	0.999
33	Malaoxon	127	11.08		0.999	79	Tetrachlorvinphos	329	13.12		0.999		Phosalone	182			0.997
34	Chlorpyrifos-methyl		11.09	1.5	0.999	80	Butachlor	176	13.17	2.8	0.999	126	Pyriproxyfen	136	16.74	1.5	0.999
35	Bromobutide	119		2.7	0.999	81	Paclobutrazol	236	13.19	2.2	0.998	127		256			0.999
36	Alachlor	188	11.21	2.7	0.999	82	Butamifos	286	13.32	7.2	0.998	128	Mefenacet	192	16.82		0.998
37	Simeconazole	121			0.998	83	9-bromoanthracene	256		\leq	\leq		Pyraclofos	360			
38	Tolclofos-methyl		11.23	1.4	0.999	84	Endosulfan α	195	13.37	6.7	0.999	130	Cafenstrole	100			0.998
39	Simetryn		11.25		0.999	85	Flutolanil	173			0.999		Etobenzanid		18.29		0.999
40	Ametrine	227	11.31	1.7	0.999	86	Napropamide	72	13.43	1.0	0.999		Boscalid	140	18.93		0.999
41	Metalaxyl		11.32		0.999	87	Metominostrobin	191	13.46		0.999		Etofenprox		19.32	-	0.999
42	Prometryn	241	11.36		0.999	88	Isoprothiolane	118	13.52	1.2	0.999	134		126	19.80	7.4	0.998
43	Cinmethylin	105			0.999	89	Isoxathion oxon	161	13.53		0.996	135		323			0.999
44	Mpp oxon	262	11.39	3.1	0.998	90	Pretilachlor	176	13.54		0.999	136	Difenoconazole-2		21.24	4.7	0.999
45	Dithiopyr	354		5.2	0.999	91	Thifluzamide	194	13.66	2.2	0.998	137	Pyrazoxyfen	105	21.28	1.9	0.999
46	Pirimiphos-methyl	290	11.54	1.9	0.998	92	Fenthion oxon sulfoxide	262	13.68	2.2	0.999						


Coefficient of variation for 5 ppb of 134 pesticide components

A full range of quantitative analysis functions to meet all your needs Even qualitative analysis is possible.

Escrime[™] is a multi-component quantitative analysis software package that can automatically calculate chromatogram peak areas, create calibration curves, and calculate quantitative values for target compounds. Additionally, this software allows the user to individually set or batch change the area calculation ranges and quantitative ions, which greatly reduces the time required for data processing. The Escrime[™] quantitative conditions and analysis parameters can be linked directly to the MSPRIMO[™] instrument control software to simplify the overall quantitative analysis process.

The quantitative analysis report format can be customized according to the purpose and needs of the researcher. Escrime™ is an essential tool for the quantitative analysis of multiple samples with multiple components.

Component peaks in multiple samples or several component peaks in a single sample can be shown in the same screen. In addition, peak area calculation range can be changed simultaneously, enabling bulk processing of multiple samples.

Escrime[™] also features qualitative analysis capabilities that are available in a separate window. The qualitative analysis functions include automatic spectrum creation and library search, chromatogram peak list creation, and chromatogram creation.

Additionally, the qualitative analysis results can be copied and used for quantitative conditions by using drag-and-drop.

Software for Quantitative Analysis of Dioxins and PCBs "TQ-Diok"

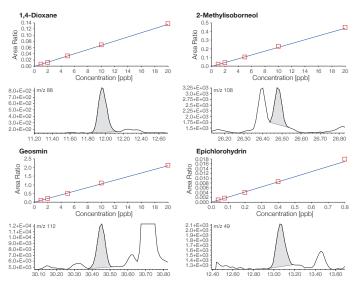
TQ-Diok is quantitative analysis software specifically designed for dioxins and PCBs using benchtop GC-MS.

This software was developed by porting the features of DioK, a dedicated quantitative analysis software package for dioxins, into Escrime[™].

TQ-Diok provides automatic quantitative analysis and reporting capabilities that greatly reduces the time required to analyze samples such as dioxins and PCBs. This quantitative software combines the ease of use of Escrime[™] with the expertise of Diok.

and time] 2017/86/14 17:55:47 [C

11 10X 75X -51X -51X -25X -11 11X 75X -51X -11 11X 75X -51X -11 11X 75X -51X -

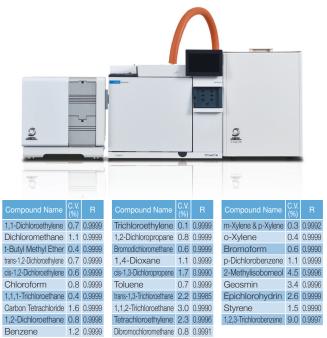

TQ-Diok simplifies and automates complicated analysis flow! Anyone can easily perform quantitative analysis of dioxins and PCBs with this software.

Water analysis using a single GC column to measure VOCs, mold odor-causing substances, epichlorohydrin, styrene, and 1,2,3-trichlorobenzene

Headspace-GC/MS is commonly used for regulated water quality testing. However, in most cases, a column exchange between 2 different GC columns is required to test all targeted components.

In this study, we showed that the SQ-Zeta can be equipped with a single GC column (DB-1301, 60 m, 0.32 mm ID, 1 µm film thickness), to measure 2-methylisoborneol (2-MIB) and geosmin which are caused mold odor, volatile organic compounds (VOCs), as well as epichlorohydrin, styrene, and, 1,2,3-trichlorobenzene by only changing the instrument parameters.

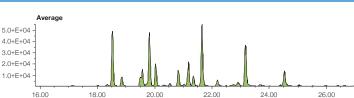
The results showed good linearity for the calibration curves and good reproducibility at the limits of quantitation.


Extracted ion chromatograms and calibration curves of representative components

TQ-Diok Application : PCBs quantitative analysis

Analysis of low concentration PCBs in coating fragment

A sample solution was prepared by treating 5 g of a coating fragment in accordance with the "Measurement Methods for Low Concentration PCB-containing Wastes (5th Edition)" published by the Japanese Ministry of the Environment. A MBP-MPX PCB solution (Wellington Laboratories) was added as an internal standard to the sample solution just prior to sample analysis. The measurement conditions were based on the "Manual for Simple Determination of Trace PCBs in Insulating Oil (3rd Edition)" published by the Japanese Ministry of the Environment.


The results showed that the average relative response factor (AV-RRF) per cogener had good reproducibility with relative standard deviations (RSD) that ranged from 2.4% to 4.9%. The PCBs concentration in the coating fragment calculated by using the obtained Av-RRF resulted in 1.2 mg/kg.

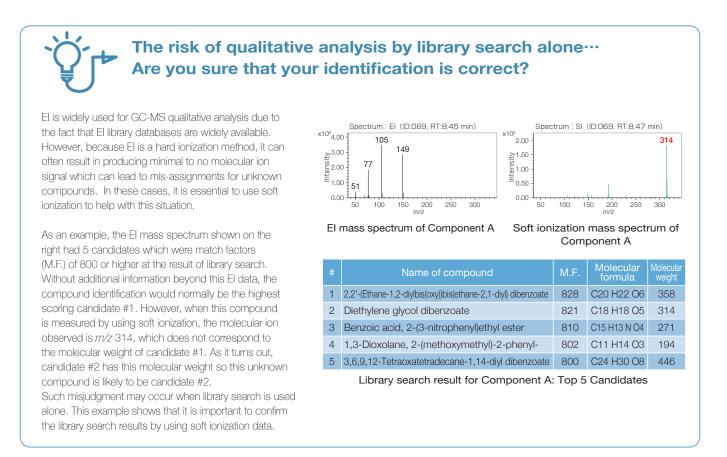
Coefficient of variation of relative standard deviation (n=5) and calibration curve at the limit of quantification for each component.

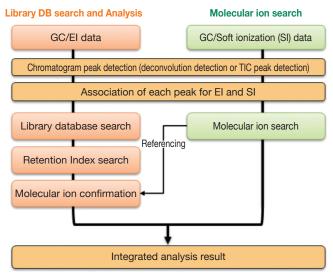
[limit of quantitation]

VOC (excluding 1,4-Dioxane): 0.1 ppb 1,4-Dioxane :1 ppb 2-MIB, Geosmin : 1 ppt Epichlorohydrin: 0.04 ppb Styrene, 1,2,3-Trichlorobenzene : 0.1 ppb

Average homologue chromatogram of PCBs in coating fragment

-								-
Ne	Tune	Companyind	Isomer	Av-RRF	SD	%RSD	ОК	ľ
 No.	Туре	Compound						
1	QNT	M1CB	#3	1.2646	0.0393	3.1	OK(10)	
2	QNT	D2CB	#8	0.9534	0.0286	3.0	OK(10)	
3	QNT	T3CB	#28	0.9436	0.0420	4.5	OK(10)	
4	QNT	T4CB	#52	1.0958	0.0260	2.4	OK(10)	ŀ
5	QNT	P5CB	#101	0.9984	0.0371	3.7	OK(10)	I
6	QNT	P5CB	#118	1.0185	0.0372	3.7	OK(10)	
7	QNT	H6CB	#153	1.0146	0.0414	4.1	OK(10)	Ι
8	QNT	H6CB	#138	1.0684	0.0324	3.0	OK(10)	L
9	QNT	H7CB	#180	1.0343	0.0503	4.9	OK(10)	Ī
10	QNT	O8CB	#194	1.0675	0.0473	4.4	OK(10)	
11	QNT	N9CB	#206	0.9905	0.0364	3.7	OK(10)	I
12	QNT	D10CB	#209	1.0616	0.0493	4.6	OK(10)	Ι,


Reproducibility of average relative response factor



Break free from qualitative analysis based on library search alone! A higher level of qualitative analysis is possible by combining El and soft ionization data!

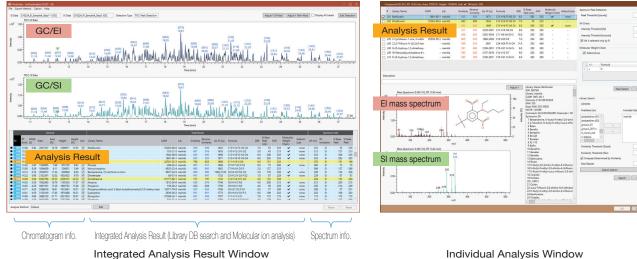
Based on our highly acclaimed msFineAnalysis software for GC-TOFMS, the new msFineAnalysis iQ expands this integrated qualitative analysis capability into GC-QMS data analysis.

This software automatically combines the library search results from the El data with molecular ion information from the soft ionization data, and then reports the results in a color coded table. This combination of El and soft ionization results in improved accuracy for identifying unknowns when compared to relying on library database searches alone. Consequently, msFineAnalysis iQ is essential for the qualitative analysis GC-QMS data.

Work Flow of Integrated Analysis

msFineAnalysis iQ automatically performs the following steps. ① Peak detection (deconvolution peak or TIC peak detection) ② Link of El and SI data (link)

EINKOLEI AND SI DALA (IINK

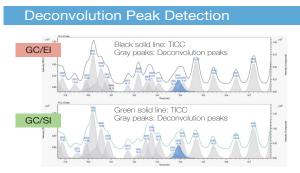

③ Library search (El)

- ④ Molecular ion search (SI)
- (5) Libray search result (EI, SI integration)

⑥ Integrated analysis result

Using El and SI in combination with msFineAnalysis iQ provides a higher level of qualitative analysis results than relying on database searches alone.

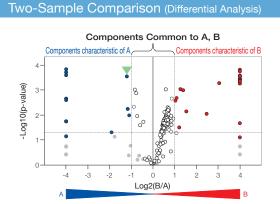
msFineAnalysis iQ is optional software



Individual Analysis Window

The integrated analysis results screen show the overall analysis results which includes the EI/SI chromatogram data, chromatogram information, spectrum information, library search results, and molecular ion analysis results.

Double-clicking on a line in the analysis result list shows the individual mass spectrum analysis screen. In this screen, you can check and reanalyze the library search results and molecular ion analysis results.


Versatility of msFineAnalysis iQ

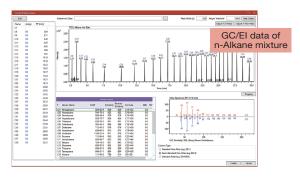
Deconvolution Peak Detection Example:

Each gray peak indicates a component detected by deconvolution.

With deconvolution peak detection, it is possible to detect low intensity peaks as well as coeluting peaks with varying intensities that cannot be easily confirmed in the TICC.

Volcano Plot :

The volcano plot above represents the difference and reproducibility between two samples. This plot visually illustrates the characteristic components associated with each sample.


Another important feature of msFineAnalysis iQ is the variance components analysis function in which two similar samples can be directly compared in order to identify sample differences. This analysis function statistically compares two samples while also utilizing all of the normal msFineAnalysis iQ qualitative analysis capabilities described previously. Variance components analysis can be particularly useful for comparing complex materials that have subtle differences.

Single Analysis with Only El Data

The software can also analyze GC/EI data alone when it is the only data available for your sample. In this case, the El data is used for the molecular ion search, and this information is combined with the El library search results.

Qualitative Analysis Using Retention Index

Retention Index Creation Screen

A retention index is a relative index value assigned to an analyte that is based on the retention times for an n-alkane standard mixture. This information basically allows the user to convert the target component retention time to a retention index value that can be directly compared to the retention index values available in the databases.

msFineAnalysis iQ can narrow down the search candidates by using the retention index value.

Pretreatment hardware options that meet your needs

Headspace Sampler (HS)

Headspace GC-MS system

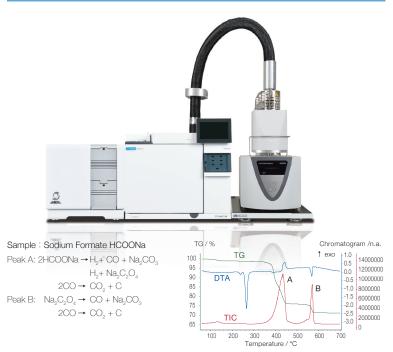
Pyrolysis (Py)

A headspace sampler is capable of sampling volatile compounds present above a solid or liquid sample and can be useful for applications involving VOCs in water, foods, and materials.

The headspace sampler developed by JEOL is a unique HS sampling system with 2 modes: loop mode and trap mode. Trap mode is particularly useful for high sensitivity measurements, such as mold odor-causing substances in water.

Multi-function Autosampler

Multi-function Autosampler GC-MS System


The PAL System is a multi-function autosampler that can be customized to do liquid injections, automation for headspace sampling, solid phase microextraction (SPME), solid phase extraction (SPE), and liquid sample dispensing and dilution. Adding this to our GC-MS allows sequential pretreatment and GC-MS measurement.

The photo shows the system configuration in combination with the CTC multi-function autosampler (PAL RTC).

Pyrolysis GC/MS System

Pyrolysis GC-MS is an analytical technique that combines a pyrolyser with a GC/MS. This technique is very useful for the analysis of organic compounds generated from samples that are subjected to pyrolysis conditions. It can be used for the analysis of polymer materials such as synthetic polymers, rubbers, etc. The photo shows the system configuration with the Frontier Lab's Multi-Shot Pyrolyzer (EGA/PY-3030E) in combination with the Auto Shot Sampler (AS-1020E).

Thermogravimetry/Differential Thermal Analysis (TG/DTA)

Thermogravimetry/Differential Thermal Analysis-MS System

For use in evaluating thermophysical properties, such as weight change and heat generation/absorption, associated with chemical change during the heating of a liquid or solid sample. When connected to an MS, the compounds generated during the heating process can be analyzed in real time. This system can be used for analysis of gases generated by heating materials, such as polymers.

JEOL Mass Spectrometer lineup

GC-MS Series

Gas Chromatograph Triple Quadrupole Mass Spectrometer JMS-TQ4000GC UltraQuad™ TQ

Building upon the features of the JMS-Q1600GC, the UltraQuad™ TQ is a GC-MS/MS that uses JEOL's patented short collision cell technology to enable high throughput and high-sensitivity analysis of targeted, low-level analytes.

The ion accumulation and pulsed ion ejection capabilities of the short collision cell allow for highly-sensitive and -selective measurements even in high speed SRM mode (up to 1000 transitions/sec). As a result of these strong capabilities, target applications for this system include the analysis of pesticides and other contaminants in environmental and food samples.

High Performance Gas Chromatograph - Time-of-Flight Mass Spectrometer JMS-T2000GC AccuTOF™ GC-Alpha

Our 6th generation gas chromatograph time-of-flight mass spectrometer has the highest resolution in its class at 30,000 and can determine compound composition from the accurate mass of measured ions. This system includes msFineAnalysis which simplifies the analysis of unknown compounds that are not registered in a library database.

As a GC-MS with strong qualitative analysis capabilities, it is used for a variety of applications, including material analysis and non-targeted analysis of environmental samples.

JMS-800D UltraFOCUS™

The JMS-800D mass spectrometer is focused on the analysis of dioxins, PCBs, and other related trace environmental contaminants using HRGC/HRSIM modes.

This system has been equipped with a variety of capabilities to improve productivity and reduce maintenance costs.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer JMS-S3000 SpiralTOF™-plus 2.0

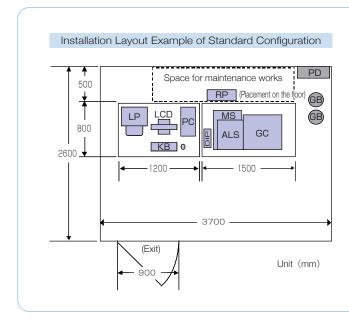
Atmospheric Pressure Ionization High Resolution Time-of-Flight Mass Spectrometer JMS-T100LP AccuTOF[™] LC-Express

The JMS-S3000 has evolved into SpiralTOF™ -plus 2.0 with much wider dynamic range. The JMS-S3000 defines a new standard in MALDI-TOFMS performance and provides state-of-the-art analytical solutions for a wide range of research areas such as functional synthetic polymers, materials science, and biomolecules.

The AccuTOF™ LC-Express is the fourth generation of the successful AccuTOF™ LC series, a robust and easy-to-maintain, high-throughput mass spectrometer aiming for high productivity with multiple ionization methods.

JEOL's unique ionization technology, DART™ (Direct Analysis in Real Time) can rapidly provide accurate mass information. It is also easy to replace the ion source with the electrospray ionization (ESI) source for LC/MS operation, or with ColdSpray ionization (CSI) source.

MALDI-TOFMS, LC-MS


Specifications

QMS Standard Configuration

Ion Source	Electron Ionization	
	lonization Energy 10 to 200 e	V
	Chamber Temperature 100 to 3	300 °C
Analyzer	High-precision hyperbolic quadr	upole mass filter
	Plug-in prefilter system	
Detector	Conversion dynode/ion multiplie	r detection
	Positive and negative ion detecti	on
Evacuation System	Large differential evacuation syst	tem TMP 1 unit (Ion Source 200 L/s or equivalent, Analyzer 200 L/s or equivalent)
	Rotary Pump 1 unit (External)	
Mass Range	1 to 1022 u	
Resolution	2000 or better (FWHM, at m/z 6	:14)
Scan Speed	22,222 u/s	
Sensitivity (El)	Instrument detection limit (IDL)	5 fg or less : Octafluoronaphtalene(OFN) <i>m/z</i> 272
	Scan	S/N 1000 or more(RMS) : 1 pg Octafluoronaphtalene(OFN) <i>m/z</i> 272

Gas Chromatograph[MS-62111AGC]

Column Oven	Temperature range: Room temperature: + 4 to 450 °C (Minimum unit for temperature setting : 0.1 °C step)
	Effect of atmospheric temperature: Less than 0.01 $^\circ$ C per 1 $^\circ$ C
	Heating program: Up to 20 stages settable (Maximum heating rate:120 $^\circ \!\! C$ /min)
Inlet	Split/Splitless inlet
	Maximum operating temperature: 400 °C (Extension up to 2 Ports possible)
Pressure Setting Range	0 to 680 kPa (For column of 0.200 mm or more diameter)
Total Flow	0 to 1250 mL/min (He)

Symbol	Name
MS	QMS basic unit
GC	Gas Chromatograph
PC	PC
LCD	Display
KB	Keyboard
LP	Laser printer
RP	Rotary pump
PD	Power distribution panel
GC	Gas cylinder
DIP	PS for direct MS probe (optional)
ALS	GC Autosampler (optional)

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 · ISO 14001 Certified

• AUSTRALIA & NEW ZEALAND /JEOL (AUSTRALASIA) Pty.Ltd. Suite 1, L2 18 Aquatic Drive - Frenchs Forest NSW 2086 Australia • BELGIUM /JEOL (EUROPE) B.V. Planet II, Gebouw B Leuvensesteenweg 542, B-1930 Zaventem Belgium • BRAZIL /JCoL Brasil Instrumentos Científicos Ltda. Av, Jabaquara, 2958 5° andar conjunto 52; 04046-500 Sao Paulo, SP Brazil • CANADA /JEOL CANADA, INC, 3275 tere Rue, Local #8 SH-lubert, QC J3Y-8Y6, Canada • CHINA /JEOL (EURING) CO., LTD. Zhongkeziyuan Building South Tower 2F, Zhongguancun Nansanjie Street No. 6, Haidian District, Beijing, P.R.China • EGYPT /JEOL SERVICE BUREAU 3rd FI. Nile Center Bldg., Nawal Street, Docki, (Carion), Egypt • FRANCE /JEOL (EUROPE) SAS Espace Claude Monet, 1 Allee de Giverny 78290, Croisay-sur-Seine, France • GERMANY /JEOL (GERMANY) GmbH Gute Aenger 30 85366 Freising, Germany • GREAT BITAIN & IRELAND /JEOL (U.K.) LTD. Silver Court, Watchmead, Welvyn Garden Ciy, Herfordshire AL7 11T, U.K. • INDIA /PCI. INDIA PVT. LTD. Unit No.305, 3rd Floor, ABW Elegance Tower, Jasola District Centre, New Dehi 110 025, India /JEOL (NDIA PVT. LTD. Hyderabad 500016, India · ITALY /JEOL (ITALIA) S.p.A. Palazzo Pacinotti - Milano 3 City, Via Ludovico Ildoro, 6/A 20079 Basiglio(MI) Italy • KOREA JCOL KOREA LTD. Dongwoo Bldg. TF, 1443, Yangia Dearo, Gangdong-Gu, Seoul, 06355, Korea • MALAYSIA /JEOL (MLAYSIA) SDN.BHD. 508, Block A, Level 5, Kelana Business Centre, 97, Jalan SS 7/2, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia • MEXICO /JEOL DE MEXICO S.A. DE C.V. Arkansas 11 Piso 2 Colonia Napoles Delegacion Benito Juarez, C.P. 03810 Mexico D.F., Mexico • QATAR /Mannai Trading Company W.L.L. ALI Emadi Complex, Salwa Road P.O. Box PTE.LTD, 2 Corporation Road #01-12 Corporation Place Singapore 618494 • TAIWAN /JIE DONG CO., LTD. 7F, 112, Chung Hsiao East Road, Section 1, Taipei, Taiwan 10023 (R.O.C.) • THE NETHERLANDS /JEOL (EUROPE) B.V. Lireweg 4, NL-2153 PH Nieuw-Vennep, The Netherlands • USA /JEOL USA, INC. 11 Dearborn Road, Peabody, MA 01960, U.S.A.