

SpiralTOF-TOF Synthetic Polymer Structure Analysis Poly Methal Methacrylate (PMMA)

Introduction:

The JMS-S3000 "SpiralTOF[™]" is a MALDI-TOFMS that incorporates an innovative SpiralTOF ion optics system. This system is available with a TOF-TOF option that can acquire high-energy collision-induced dissociation (CID) product ion spectra for monoisotopically selected precursor ions.

In this work, we analyzed Poly Methyl Methacrylate (PMMA) shown in Fig. 1 by using the JMS-S3000 SpiralTOF with the TOF-TOF option. The resulting high-energy CID data was then processed using the Polymerix[™] (Sierra Analytics, Inc., http://massspec. com/) analysis software.

Samples:

Polymer: PMMA Matrix agent: 2,5-Dihydroxybenzoic acid (DHB) Cationization agent: NaI

Results and Discussion:

The MALDI mass spectrum of PMMA and the product ion spectra for m/z 1525.8 (n=15, [M+Na]⁺) and m/z 2326.2 (n=23, [M+Na]⁺) are shown in Fig. 2. These product ion spectra show the full range of ions from m/z 23.0 for [Na⁺] to the precursor ion m/z 1027.7 and m/z 2326.2, respectively. Also worth noting, these product ions are all monoisotopic because the precursor ion was monoisotopically selected, which greatly simplified the resulting MS-MS spectrum.

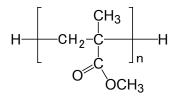


Figure 1. Structural formula of PMMA.

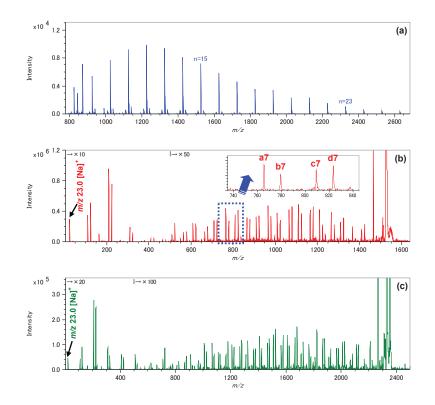


Figure 2. MALDI mass spectrum of a) PMMA, b) product ion spectrum of m/z 1525.8 (n=15, [M+Na]⁺), and c) product ion spectrum of m/z 2326.2 (n=23, [M+Na]⁺).

JEOL USA * 11 Dearborn Road * Peabody MA 01960 * 978-535-5900 * www.jeolusa.com © JEOL USA Page 1 of 2 The enlarged region (m/z 730-850) in Fig. 2b shows that there are at least four different product ions present that could result from the monomer repeat unit (100u, $C_5H_8O_2$). Therefore, this high-energy CID data for PMMA suggests that there are four possible fragmentation pathways.

Based on previously published work¹, we hypothesized that the structural formulas for these different product ion series were most likely the structures shown in Fig. 3a-d. These formulas were then used in the PolymerixTM software which resulted in the product ion series assignments shown in Fig. 5. These results supported our hypothesis for each structure and showed that the JMS-S3000 high-energy CID data fully represents the structural fragmentation expected for PMMA.

Conclusions:

Structural analysis of synthetic polymers such as PMMA can easily be done by using the JMS-S3000 TOF-TOF method (high-energy CID, monoisotopic precursor selection) with the Polymerix[™] analysis software.

Reference:

(1) Liang Li, "MALDI Mass Spectrometry for Synthetic Polymer Analysis", John Wiley & Sons, Inc., United States of America (2010).

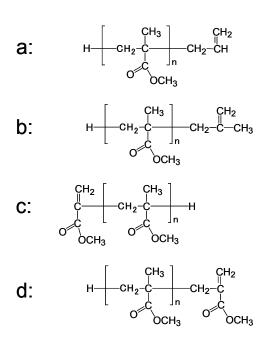


Figure 3. Structural formula of product ions series.

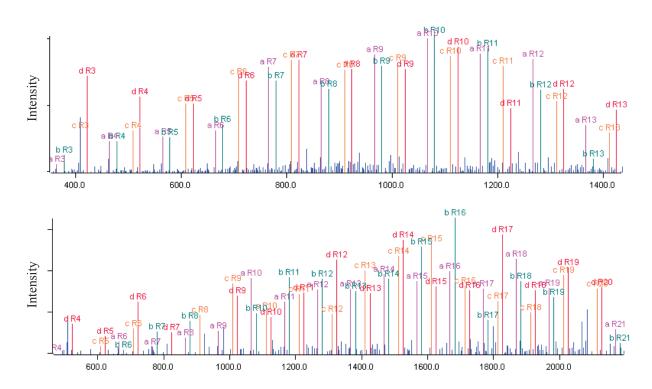


Figure 4. Polymerix analysis results of m/z 1525.8 (n=15, [M+Na]⁺) (upper) and m/z 2326.2 (n=23, [M+Na]⁺) (lower).

