New Jersey Nanotechnology Consortium

Performance Issues in E-Beam Nanolithography

D.M. Tennant

Bell Labs/Lucent Technologies New Jersey Nanotechnplogy Consortium Murray Hill. NJ. USA

Hig	h Volta	age	e-Be	am	Lith	ogra	phy	
	TABLE L Linewidt	hs of latent i	mage from equ	ienergy dens	ty contours			
	500Å Film	ins of latent i	nuge nom eq	inchergy dens	ty contours.			
	E' (eV/coul.cm ²)	25 keV	W 50 keV	(Å) 75 keV	100 koV			
	2 (01/00010117)	LUNUT	00 KUV	75 KUV	100 800			
	1 x 10 ³¹ 1 x 10 ³⁰	80 300	40 200	40 100	40 80			
	5 x 10 ²⁹ 2 x 10 ²⁹	500 900	300 600	250 550	200			
				000	500			
	1000 Å Film		w	(Å)				
	E' (eV/coul-cm ²)	25 keV	50 keV	75 keV	100 keV			
	1 x 10 ³⁰	400	300	150	40			
	5 x 10 ²⁹ 2 x 10 ²⁹	700 1200	400 800	300 600	250 550			
	Kyser							
	J. Vac. Sci. Tech	inol. B, Vol.	1, NO. 4, OCL	-Dec. 1983				
-7				New Je	rsey Nar	otechno	ology C	onsor
nc	Perf	orma	nce S	New Je	rsey Nar arv	otechno	ology C	onsor
2	Perfe cc Voltage	orma	nce S	New Je umm (+/- 2ppm	rsey Nar ary	otechno	ology C	onsor
7	Perfo	orma	nce S	New Je UMM / +/- 2ppm	rsey Nar ary	otechnc	ology C	onsor
7	Perfe cc Voltage inimum Beam Siz	orma e	nce S 100 kV 4 Xm	New Je UMM / +/- 2ppm .0 nm in = 100 nn	rsey Nar ary	otechno	ology C	onsor
7	Perfo cc Voltage inimum Beam Siz	orma e	nce S 100 kV 4 Xm Xm	New Je UMM / +/- 2ppm .0 nm in = 100 nm ax = 106 nr	rsey Nar ary		ology C	onsor
A	Perfe cc Voltage inimum Beam Siz newidth Uniformit (in 1 field)	orma e	nce S 100 kV 4 Xm Xm Xm Ymi Ym	New Je UMM / +/- 2ppm .0 nm in = 100 nn ax = 106 nr in = 104 nn ax = 110 nr	rsey Nar ary	otechno	ology C	onsoi
A Mi Lir Po wi	Perfe cc Voltage inimum Beam Siz newidth Uniformit (in 1 field) psition Accuracy thin Field	orma e y	nce S 100 k\ 4 Xm Xma Ymi Ymi -0.007	New Je UMM (+/- 2ppm .0 nm in = 100 nn ax = 106 nr in = 104 nn ax = 110 nr 'µm, +0.006	rsey Nar ary 1; 1; 1;	otechno	ology C	onsor
7 A Mi Lir Pc wi Mi	Perfe cc Voltage inimum Beam Siz newidth Uniformit (in 1 field) osition Accuracy thin Field	orma e ty	nce S 100 kV 4 Xm Xm Ym Ym -0.007 -0.010µ	New Je UMM (+/- 2ppm .0 nm in = 100 nn ax = 106 nr in = 104 nn ax = 110 nr 'µm, +0.006 um, +0.013	rsey Nar ary n 1; n i; m	otechno	ology C	onsor
A Mi Lir Pc wi St Di St	Perfo	orma e ty	nce S 100 kV 4 Хт Ут Ут -0.007 -0.010µ -0.021µ	New Je UMM 4 / +/- 2ppm .0 nm in = 100 nn ax = 106 nr in = 104 nn ax = 110 nr /µm, +0.006 im, +0.013µ im, +0.024µ	rsey Nar ary ary a; n ; n ; n ; m		ology C	onsor
A Mi Lir Pc Wi St ON Ac	Perfe cc Voltage inimum Beam Siz newidth Uniformit (in 1 field) position Accuracy thin Field ask Write: Field iching Accuracy rect Write: Field itching Accuracy	orma e y	nce S 100 kV 4 Xm Ymi Ymi -0.007 -0.010µ -0.021µ -0.021µ	New Je UMM 4 / +/- 2ppm .0 nm in = 100 nm in = 100 nm in = 100 nm in = 104 nm ax = 110 nr im, +0.013 im, +0.024 im, +0.024	rsey Nar ary ary ary ary ary ary ary ary ary a		ology C	onsor
A Mi Lir Pc wi Mi St Di St O V Ac	Perfe	orma ee ty	nce S 100 kV 4 Xm Xm Ym Ym -0.007 -0.010µ -0.021µ -0.013 -0.011	New Je Umma / +/- 2ppm .0 nm in = 100 nn ax = 106 nr in = 104 nn ax = 110 nr 'µm, +0.006 im, +0.013 im, +0.0124 µm, +0.012	rsey Nar ary ary ary ary ary ary ary ary ary a	otechno	ology C	onsor

