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Abstract

45-nm CMOS devices with a steep halo using a high-
ramp-rate spike annealing (HRR-SA) are demonstrated
with drive currents of 697 and 292 pA/um for an off
current less than 10 nA/um at 1.2 V. For an off current
less than 300 nA/um, 33-nm pMOSFETs have a high
drive current of 403 pA/um at 1.2 V. In order to fabri-
cate a steeper halo than these MOSFETs, a source/drain
extension (SDE) activation using the HRR-SA process
was performed after a deep source/drain (S/D) forma-
tion. By using this sequence defined as a reverse-order
S/D formation, 24-nm nMOSFETs are achieved with a
high drive current of 796 uA/um for an off current less
than 300 nA/um at 1.2 V.

Introduction

Sub-50-nm CMOS devices have been investigated us-
ing a highly-controlled halo structure (eg. a super halo or
a tilted channel ion-implantation) for high-performance
system LSIs [1-3]. In order to precisely control the halo
region, a steep halo formation, as shown in Fig. 1, is one
of the key issues. Therefore it is remarkably important
to suppress a thermal budget for the halo region.

In this paper, in order to suppress the thermal bud-
get, the high-ramp-rate spike annealing (HRR-SA) pro-
cess was evaluated for the halo, deep source/drain (S/D)
and S/D extension (SDE) regions. Furthermore, the
reverse-order S/D (R-S/D) formation with the HRR-SA
process was investigated to reduce the thermal budget of
a gate-sidewall formation for the halo and SDE regions.
Feasible sub-50-nm CMOS devices with the steep halo
structure were also performed.

Experiment

After a shallow trench isolation (STI) formation, well
and channel regions were formed. A SiON gate dielectric
film with Tox?/”=2.5 nm was used by an NO oxynitri-
dation. A gate pattern of a 270-nm thick EB-resist was

exposed by a mix-and-match (M&M) lithography with
over-lap regions, using a point electron-beam (EB) (JBX-
9300FS) and a KrF, as shown in Fig. 2 [4]. After an
in-situ EB-resist thinning, a gate-etching process was
carried out, as shown in Fig. 3. A fine gate electrode
down to 24 nm was implemented by these techniques.

The halo, SDE and S/D regions were performed by
the R-S/D and C-S/D formations under the HRR-SA
condition. The HRR-SA process has a fast ramp-up rate
of 300 °C/sec and an approximately fast ramp-down rate
of 100 °C/sec. In contrast, a spike annealing {SA) pro-
cess has a slower ramp-up rate of 75 °C/sec and a slower
ramp-down rate of 35 °C/sec. A CoSi; film of 7 /sq.
was formed after a final gate-sidewall-formation. In or-
der to suppress a diffusion and de-activation of halo and
SDE dopants, the back-end process was carried out at a
lower-temperature less than 700 °C.

Results and Discussion
A. Conventional-Order S/D (C-S/D) Formation

In order to suppress the thermal budget for the halo
and SDE regions, the HRR-SA process was performed
[5,6}. The HRR-SA process at 1050°C improves a short
channel effect (SCE) for n/pMOSFETs, as shown in
Fig. 4. However, drive currents (Ion) at an off current
(Iorr) of 10 nA/pm decrease with a decrease in the
HRR-SA temperature from 1050 to 1030 °C, as shown
in Fig. 5. This is caused by both a parasitic resistance
increase and a gate-electrode depletion.

In order to effectively suppress the SCE, a halo-ion-
implantation (I/I) dose was optimized using a 1050-°C
HRR-SA process, as shown in Fig. 6. 45-nm CMOS
devices with a lower off-current less than 10 nA/um
are performed by a high-dose halo for n/pMOSFETs,
as shown in Figs. 7 and 8. Figure 9 shows the logg-
Ion characteristics for n/pMOSFETs with various halo
doses at 1.2 and 1.5 V. The drive currents at an off
current of 10 nA/gm are almost the same for all halo
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doses in the C-S/D formation. Excellent cut-off and Ip-
Vp characteristics are achieved for n/pMOSFETs with
a gate length of 24-45 nm, as shown in Figs. 16 and 17.
The drive currents for 45-nm n/pMOSFETs arc 697 and
292 pA/pm, respectively, for the off current less than
10 nA/um a8t 1.2 V. Moreover, the high drive current
of 403 pA/um is achieved for 33-nm pMOSFETs with
the off-current less than 300 nA/um at 1.2 V. However,
a severe reverse-SCE (RSCE) is observed for the high-
dose-halo n/pMOSFETs, as shown in Fig. 6.

B. Reverse-Order S/D (R-S/D) Formation

In order to sufficiently improve both the SCE and the
drive current, the R-S/D formation was implemented us-
ing the HRR-SA process. The RSCE, SCE and threshold
voltage (Vth) fluctuation are dramatically suppressed
by the R-S/D formation for nMOSFETsS, as shown in
Fig. 10. Furthermore, a drain induced barrier lowering
(DIBL) and a subthreshold swing (SS) values are dras-
tically suppressed by the R-S/D formation for less than
50-nm nMOSFETsS, as shown in Fig. 11. These results
indicate that a transient enkanced diffusion (TED) and
a thermal diffusion (TD) are effectively suppressed by a
low temperature gate-sidewall formation after the halo
and SDE formations in the R-S/D formation. On the
other hand, the pMOSFETSs using the R-S/D and the
C-S/D formations have almost the same Vth lowering,
as shown in Fig. 10. Figure 12 shows the off current
dependence on a physical gate length for tMOSFETs.
loFF-degradation slope for a fine gate length less than
50 nm is remarkably suppressed using the R-S/D forma-
tion. lorr-lon characteristics are drastically improved
using the R-S/D formation, as shown in Fig. 13. It is
speculated from these results that the halo and SDE pro-
files using the R-S/D formation are steeper than those
using the C-S/D one.

The relationship between an HRR-SA annealing tem-
perature and device characteristics was evaluated for
n/pMOSFETs using the R-S/D formation, as shown in
Fig. 14. A minimum gate length (Lmin) at the off cur-
rent of 10 nA/um decreases with a decrease in an HRR-
SA temperature, however, the drive current is seriously

suppressed, because of only a parasitic-resistance increase.

In contrast, the drive currents using the R-S/D forma-
tion significantly increase with an increase in the halo
dose, compared to those using the C-§/D formation, as
shown in Fig. 15. It has been reported.that high drive
currents are maintained by the steep SDE profile using
& Jow temperature annealing process {7]. Therefore this

result in this paper indicates that the steep SDE and
halo profiles are obtained by the R-S/D formation with
the HRR-SA process. Excellent cut-off and Ip-Vp char-
acteristics are achieved for 24-nm nMOSFETs, as shown
in Figs. 16 and 17. The high drive current of 796 xA/um
is observed for 24-nm nMOSFETs with the off-current
less than 300 nA/um at 1.2 V.

C. Device Performances

Figure 18 shows the propagation delay time (754} de-
pendence on a harmonic mean of the drive current for
an inverter ring oscillator using the CMOS devices with
F/O=1 at 1.2 and 1.5 V. The 754 velues are almost the
same for the R-S/D and the C-S/D formations. On the
other hand, the R-S/D formation remarkably suppresses
the 754 values for the same gate length, compared to the
C-5/D formation, as shown in Fig. 19. The T,g values
for the R-S/D formation are 26% faster than those for
the C-S/D one. This is because the drive current formed
by the R-S/D formation for nMOSFETs is higher than
those by the C-S/D one. Therefore 11.7 psec/stage is
achieved at 1.2 V.

Conclusion

Sub-50-nm CMOS devices down to 24 nm with a
lower off current are demonstrated by the steep halo us-
ing the R-8/D or C-S/D formations with the HRR-SA
process at 1.2 V. The drive currents for 45-nm n/pMOS-
FETs using the C-R/D formation are 697 and 292 uA/um
for an off-current less than 10 nA/um, respectively. For
the off-current less than 300 nA/um, the drive currents
for 33-nm pMOSFETs using the C-S/D formation are
403 pA/pum. Furthermore, 24-nm nMOSFETs using the
R-5/D formation have high drive currents of 796 pA/um
for the off-current less than 300 nA/um. Finally 11.7 psec
is achieved for F/O=1.
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