Photomask / Direct Write Lithography Documents

JEOL Resources

rss

Documentation in support of your JEOL product.

QDIP Web Input

Sensors have to meet stringent requirements for space applications such as high quantum efficiency, extremely low noise, high temperature (or uncooled) operation, radiation hardness, narrow line widths, high output power, etc. Semiconductor quantum dots are very promising for optoelectronic device applications because of their capabilities for carrier confinement in all 3-dimensions, creating discrete energy levels with a sharp delta-function-like density of states, large optical nonlinearity, normal incidence radiation absorption, lower dark current (which results from weak electron-phonon coupling), and high radiation tolerance. Although fabrication methods using self-organization, such as Stranski-Krastanov growth, are being widely studied, site and size control multi layer quantum dots material has not been achieved to date. On the other hand, Stranski-Krastanov self-assembled quantum dots could not produce focal plane array worthy materials yet. This motivated us to continue the materials and device structure improvement of self-assembled QDIPs, and development of site and size controlled semiconductor quantum dots by using molecular beam epitaxial (MBE) growth on GaAs substrates.

Attached Files
Showing 0 Comment


Comments are closed.
© Copyright 2024 by JEOL USA, Inc.
Terms of Use
|
Privacy Policy
|
Cookie Preferences