Image Alt Text

SEM image, colorized, of oil shale cross section

Image Alt Text

SEM image of catalyst

Image Alt Text

SEM-EDS analysis of oil shale

Image Alt Text

GCxGC / Field ionization EIC for C27H48 molecular ion in crude oil

Image Alt Text

FD analysis of microcrystalline wax

Image Alt Text

Soft ionization for saturated hydrocarbons

Energy Exploration

JEOL integrates sub-nanometer resolution SEM and TEM imaging and analysis with several unique capabilities and sample preparation tools, advancing research and exploration beyond all imagination. High-resolution field-emission scanning electron microscopes (FEG-SEMs) have proven to be very powerful tools for energy-related research.

Developments in such areas as solar thin films, oil shale, catalysis, and fuel cells require subnanometer resolution SEMs with a versatile set of detectors. They also require advanced sample preparation and handling techniques, such as argon ion polishing and FIB (focused ion beam).

Please see SEM Technology Advances Energy Research, from February 2010 issue of Advanced Materials & Processes.

Lithium Ion Batteries

The applications for lithium ion batteries (LIB) cover a wide range, from power sources for personal computers and mobile devices to automobiles. There is always a demand for better performance and safety.  To ensure the performance and quality of LIB, analysis and evaluation is done using several types of JEOL instrumentation.  For an overview of instruments/applications, JEOL has produced an applications notebook entitled "LIB Note."

The Problem:

The basic structure of Lithium Ion Batteries consists of cathode material, separators, anode materials, and electrolyte. These various components are in the form of powders, sheets, and fluids. These materials require assessment before and after assembly and after repeating charge/discharge operations.

The Solution:

JEOL offers a wide range of solutions for R&D, failure analysis, and product quality control for Lithium Ion Batteries.

SEM and Sample Preparation

We provide the tools that assist in morphological (surface) and  compositional characterization of battery materials without any air exposure. JEOL offers special holders and specimen loading devices that allow seamless transition between a sample preparation device such as a cross-section polisher and an imaging platform (SEM). Ultra-low voltage imaging combined with signal filtering in the SEM allows direct imaging and analysis of battery constituents (anode and cathode) with nanometer resolution.

Transmission Electron Microscopes with EELS (electron energy loss spectroscopy) to directly detect Li with chemical state analysis

Auger Electron Spectrometer

Nuclear Magnetic Resonance Spectrometers

Soft X-ray Emission Spectrometer

For a full description of JEOL solutions for LIB applications (Basic Structure & Fabrication Process; Morphology Observation and Surface Analysis Instruments; Chemical Analysis Instruments), consult our LIB Applications Note.


A Sneak Peak inside Tomorrow's Lithium Ion Batteries https://go.nature.com/32ELBUo

How Benchtop SEM Can Benefit Energy Storage Applications

Designing Better Batteries Through Innovative Microscopy Characterization

Nanoscale Chemical Characterization of Solid-State Microbattery

JEOL LIB Note Lithium Ion Battery Applications Note

An Outlook on Lithium Ion Battery Technology

Air-Isolated Sampling of Solid-State Battery for TEM

Handle with care – preparing sensitive samples

Examining the Performance of Implantable-Grade Lithium-Ion Cells after Overdischarge and Thermally Accelerated Aging


* Fuel Cell Research

Like LIB materials, material used in fuel cell research cannot be exposed to ambient conditions. JEOL designed a special airlock chamber for the SEM to transfer atmospherically-isolated samples for imaging. 


Oil shale, a fine-grained sedimentary rock, contains significant amounts of kerogen, which, when heated can release hydrocarbons, or fossil fuel. Researchers look at shale porosity at both the macro and nano scale to determine the potential of shale deposits to produce economically viable sources of oil and natural gas.

The Problem:

Shale is notoriously difficult to prepare for SEM by widely accepted mechanical means because it crumbles and smears, obscuring the features of the sample.

The Solution:

Sample Preparation – To study porosity, a well-prepared, flat sample is imperative. The JEOL cross section polisher prepares pristine cross sections without deformation of the shale sample. Many energy companies have selected the JEOL CP for its unmatched ability to produce a flat surface with no smearing or crumbling, allowing easy imaging in the SEM.

SEM Imaging and Compositional Analysis – The JEOL JSM-IT800 SEM produces detailed images of the nanopores. Using the SEM’s LABe (low angle backscatter) detector allows unprecedented contrast that clearly differentiates between kerogen, pyrite crystals, and deposits of clay, carbonates and quartz.

FIB Manipulation – The polished sample can be accurately sectioned and subsequently reconstructed in 3D to show the pore network structure using the JEOL Focused Ion Beam system.

Also see: Integrated Preparation and Imaging Techniques for the Microstructural and Geochemical Characterization of Shale by Scanning Electron Microscopy - AAPG Chapter


Demand is high for sustainable, alternative energy resources, and the future points to exponential growth in the field of photovoltaics.

The Problem:

Producing low cost, highly efficient solar cells is imperative for both the industry and the ultimate consumer. Film growth direction, grain orientation, layer thickness and porosity impact the ultimate performance and efficiency of solar thin films.

The Solution:

Improving thin film growth, incorporation of smaller and cheaper crystals (CuInGaSe), and investigation of defect structures in Si are key to producing high quality, low cost solar thin films.

Sample Preparation – The JEOL Cross Section Polisher uses an Argon beam to prepare pristine cross sections of thin films for analysis in the SEM. A technique using the beam to polish the top surface of the film in a grazing incidence configuration allows investigation of not only crystal orientation, but also the porosity and grain packing of the film.

SEM Imaging – The JEOL FEG-SEM combines low kV high resolution
backscatter imaging of film cross sections with electron backscatter diffraction (EBSD) analysis to clearly view film layer thickness and grain structure.



Nano catalysts accelerate chemical reactions in the development of new fuels.

The Problem:

The quality of the nanoparticles in the catalyst and overall performance degrade with time, and researching this problem requires imaging catalysts at high magnifications, typically done with TEM and dedicated STEM analysis.

The Solution:

Recent advances in JEOL’s Field Emission Scanning Electron Microscope technology allows 1 million X magnification providing clear SEM images of the nanoparticles that make up the catalytic materials. The JEOL JSM-IT800 thermal FE SEM employs in-lens detectors that enable imaging of features that measure in the nanometer and sub-nanometer range.

This state-of-the-art FE SEM offers a variety of detectors for imaging of catalytic materials. In-lens detectors include energy filtering capability via r-filter, allowing high-resolution imaging of both catalyst support surfaces as well as active metal nanoparticles. A low angle BE detector (LABe) allows imaging of nanometer-sized catalyst particles with high spatial resolution. With the application of specimen bias (Gentle Beam mode) surface morphology of the catalysts can be clearly resolved using ultra-low kV imaging and any of the above detectors. A STEM-in-SEM detector provides both bright field and dark field images of electron thin catalytic materials with sub 1 nm resolution and allows structural investigation of zeolitic and other materials.

JEOL works closely with customers to customize SEMs for radiological applications. From fully remote operation, shielded SEMs that are housed in hot cells and used to observe and analyze hot fuel rods, to transfer vessels that carry mildly hot samples from glove boxes to the SEM chamber, JEOL has developed solutions for nuclear energy applications.

Today’s energy concerns have led to a resurgence of interest in nuclear energy as a viable alternative to oil and coal. To make nuclear power plants safer, greener and more efficient, research is booming in the materials field. Researchers seeking steels for containment vessels that resist extended exposure to radiation and harsh corrosive fluids are turning to traditional materials analysis tools such as SEMs and Microprobes. JEOL has established itself as a valued partner in designing and manufacturing custom solutions to problems encountered with handling these new materials.

JEOL has placed SEMs in hot cells with all electronics removed to the outside control room to avoid deterioration of the solid state components. These instruments can be operated and maintained through the use of telemanipulators and through alpha-shield glove walls. JEOL has built special tungsten shielding for detector preamps and for x-ray analyzers (ED and WD spectrometers) that can operate with samples up to 3 Curies of activity.

For less radioactive samples, JEOL has designed and manufactured transfer vessels to transport samples from a glove box to the SEM load lock protecting the user and preventing sample exposure to air. In one case an SEM chamber was actually attached to the back side of a glove box so the sample never left the protective atmosphere. Additionally we provide “consumable” table top SEMs for prescreening in an unforgiving environment.

Petroleum accounts for a large percentage of the world's energy consumption and is an extraordinarily complex material composed of many types of hydrocarbons with a wide variety of properties, making them difficult to analyze.

The soft ionization capability of the AccuTOF-GCx, combined with new software tools, simplifies the analysis of data sets from complex mixtures.

Download the AccuTOF-GCx brochure for petroleum applications

Further Reading

Petroleum Applications