Analytical Instrument Documents

Boroxine cages are nanometer-sized covalent cage-like molecules that utilize beroxine formation reactions. Such molecular-sized hollow structures can contain other molecules. Encapsulated molecules sometimes change their properties significantly, and various applications using them are being investigated. One of the methods for confirming the synthesis of boroxine cages is mass spectrometry, and MALDI-TOFMS is suitable because it can ionize a wide range of compounds mainly as single-charge ions. The JMS-S3000 SpiralTOF™ achieves a long flight distance of 17 m due to its unique spiral ion trajectory, and can measure low-molecular-weight compounds ionized by the MALDI method with high mass resolution and high mass accuracy. In this report, we report the accurate mass measurement of the boroxine caged 12-mer.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometers (MALDI-TOFMS) is a powerful tool in the analysis of polymers. High-resolution MALDI-TOFMS facilitates the identification of polymer series by the elemental composition of repeating units and end groups, and allows the calculation of the molecular weight distribution of polymers from the ionic intensity distribution. In actual industrial material analysis, mixtures of polymers with different molecular weight disributions and end groups are analyzed.

The JMS-S3000 SpiralTOF™-plus Ultra-High Mass Resolution MALDI-TOFMS System time-of-flight optics design utilizes a figure-eight ion trajectory to allow a 17m flight path to fit in an extremely small console.

Polymers can be degraded by the effects of light, oxygen, heat, etc. so it is important to understand how the polymer structures change during degradation. Pyrolysis gas chromatograph quadrupole mass spectrometer (Py-GC-QMS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOFMS) are powerful tools for analyzing polymeric materials. Py-GC-QMS is a method that instantaneously heats a sample with a pyrolyzer and then analyzes the pyrolysis products by GC-MS. Since most of the pyrolysis products are related to monomers and dimers, this technique allows for easy identification of the polymer substructures which is useful for identifying changes to the polymer when degradation occurs. MALDI-TOFMS involves a soft ionization technique that can directly ionize and analyze the intact polymer molecules and often produces singly-charged ions even for high molecular weight compounds. As a result, the m/z axis of the mass spectrum is equal to the mass of the ions, thus making it easy to interpret polymer distributions. Additionally, when MALDI is used with a high-resolution TOFMS, the accurate mass of each ion in the polymer series can be used to calculate their elemental compositions. Moreover, the molecular weight distribution of polymers can be calculated from the ion intensity distribution. In this work, we used Py-GC-QMS and high-resolution MALDI-TOFMS to evaluate the effects of UV irradiation on polymethyl methacrylate (PMMA).

Advanced statistical analysis of MALDI MS imaging data required by SpiralTOF-plus while taking full advantage of its high mass-resolving power.

Applications concerning Polymers using the SpiralTOF.

Applications concerning Polymers, Materials & Chemistry using the SpiralTOF.

Applications for Life Science using the SpiralTOF.

JEOL offers numerous analytical tools to support both "food safety & security" as well as various evaluations of primary, secondary and tertiary functions of foodstuffs which are useful for a wide range of users associated with this field. This Foodnote introduces the features of each of the instruments and actual analysis examples, and is designed for researchers and engineers who are considering purchases of instruments. This brochure also presents comprehensive evaluations and analysis solutions that can be achieved with combinations of multiple instruments.

This Bionote presents an overview of the basics, namely principles and features of various instruments, as well as application examples using numerous optional attachments. We hope that the Bionote will assist researchers and engineers who intend to perform analyses in finding and exploring new approaches.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences