This website uses cookies to ensure you get the best experience on our website. Learn more
PRODUCTS

Analytical Instrument Documents

Advanced statistical analysis of MALDI MS imaging data acquired by SpiralTOF™-plus while taking full advantage of its high mass-resolving power

Advanced statistical analysis of MALDI MS imaging data required by SpiralTOF-plus while taking full advantage of its high mass-resolving power.

Applications concerning MALDI MS Imaging using the SpiralTOF.

In this report, we have applied this combined method to analyze a polyethylene terephthalate (PET) that was degraded by ultraviolet (UV) irradiation.

In this report, we have expanded MALDI-MSI to analyzing a PET film that was exposed to UV radiation. Additionally, a SEM was used to look at the morphological differences in the PET film before and after UV irradiation.

In this report, we investigate a MSI visualization method for synthetic polymers that uses Mn, Mw and D as indices for visualization.

In this report, we have combined this method with the Kendrick Mass Defect (KMD) method to effectively visualize polymer series mixtures.

The JMS-S3000 is based on JEOL's proprietary SpiralTOF ion optic system that offers the highest resolving power available in a MALDI-TOF mass spectrometer. The unique properties of the SpiralTOF provide a new level of performance in MALDI imaging.

In the industrial field, there is interest in measuring organic compounds on non-conductive substrates, such as resins a few millimeters thick. If the mass spectrum is obtained from the non-conductive surface with no pre-treatment, the mass resolution will be lower, and ultimately the ion intensity will decrease significantly due to the charge-up effect. This issue can be solved by providing conductivity to the non-conductive part via the gold deposition method.[1] In this report, MSI is performed using a permanent red marker on a substrate with a conductive part and a non-conductive part. Previously, ions could be observed only from the conductive part. Now, with the gold deposition method, they can be observed from both the conductive and the non-conductive parts, and they can be properly mapped.

The main biological functions of lipids include energy storage, signaling, and acting as structural components of cell membranes. Not only their chemical composition and structures but also the distributions in biological body are important for biochemistry. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-Imaging MS) is a powerful tool for the biochemical analyses of surfaces. Different lipid types are observed in positive or negative-ion MALDI mass spectra, depending on the presence of polar functional groups. Phosphatidyl cholines and galactosyl ceramides were mainly observed in the MALDI-Imaging MS of positive ion mode using JMS-S3000 SpiralTOF[1]. In this work, we report the use of the SpiralTOF for negative-ion MALDI-Imaging MS of sulfatides. High-resolution, accurate mass data and MS/MS data obtained under high-energy CID conditions provide information about structures, elemental compositions, and localization of many types of sulfatides.

rss

Other Resources

Image Gallery
  • View a selection of NMR and MS spectra
  • Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • Media

    Corona - Glow Discharge (DART Ion Source)

    January 28, 2022
    2499
      JEOL USA, Inc.
      11 Dearborn Road
      Peabody, MA 01960
      © Copyright 2022 by JEOL USA, Inc.