Analytical Instruments Documents

rss

JEOL Resources

Documentation in support of your JEOL product.

Need for high resolution 2D spectra

13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented.

Sample tube grade affects resolution

Some low-grade, inexpensive NMR sample tubes have large warpage, low wall thickness uniformity, and large distortion, which may adversely affect the resolution. The effect of low-grade sample tubes, such as disposable ones, on the resolution is small in low-field NMR, but it may be noticeable in high-field NMR. In addition, some disposable sample tubes are thicker or thinner than the nominal value and will not fit in the sample holder.

NOAH-NMR Supersequences with Nested Acquisition for Small Molecules

NOAH (NMR by Ordered Acquisition using 1H-detection)[1] is a group of nested NMR experiments combining several conventional two-dimensional (2D) NMR pulse sequences, such as COSY, HSQC and HMBC, into one supersequence. Therefore, two or more 2D NMR data can be obtained from a single NOAH experiment. By using a single relaxation delay, the NOAH method significantly reduces the total data collection time and increases the throughput of an NMR instrument in structure elucidation of small organic molecules.

High Resolution 2D spectra

13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented.

Study of Chemical Exchange by 2D NMR

The NMR signal of a spin reflects its local magnetic environment. If a spin due to chemical exchange samples two magnetically different states then its NMR signal would reflect both states. Its appearance on a NMR spectrum would be determined by the dynamics of the exchange event. In the case of chemical exchange that is slow on the NMR time scale, it is possible to observe two distinct signals for the same spin, one signal for each state under exchange. Presence of chemical exchange is often demonstrated with the exchange experiment (2D NOESY experiment). A exchange peak (cross peak) of the same sign can be observed between the two autopeaks (diagonal peaks) that represent the two states under exchange. Because the same results can be interpreted in a different way based on NOE, further evidence is desirable.

Non Uniform Sampling in Routine 2D Correlation Experiments

Data obtained from two-dimensional NMR experiments is incredibly useful for structure elucidation of complex molecules, especially when their one-dimensional spectra feature overlapping peaks. However, some experiments require significant amounts of time in order to yield data with adequate resolution or signal to noise for unambiguous interpretation. Any means of reducing the total acquisition time is useful. In this Note, we’ll explore a technique known as Non Uniform Sampling (NUS), demonstrate how it can be used to speed up data collection, and highlight how it can be employed in Delta™ on JEOL Spectrometers.

Exciting NMR Applications with Selective Excitation

A very powerful and useful general NMR technique is to use selective excitation to focus directly on a resonance frequency or region to allow acquisition of very specific information to efficiently answer a specific question. Many experiments have been developed that are in essence 1-dimensional analogues of 2-dimensional experiments. In particular NOESY-1D1 and TOCSY-1D have gained wide spread use and acceptance in the NMR community. The NOESY-1D and TOCSY-1D experiments can provide specific answers to questions in a fraction of the time needed for a full 2D result even with NUS techniques. In this Applications Note, we will explore the StepNoesy1D2 experiment, which can yield information typically obtained by performing time consuming 3D experiments.

Other Resources

The following resources are available for the JEOL Analytical Instruments:

Media

Corona - Glow Discharge (DART Ion Source)

February 22, 2020
116