Need for high resolution 2D spectra July 28, 2020 Experimental Possibilities, Nuclear Magnetic Resonance (NMR) 0 13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented. For full details: Attached files often contain the full content of the item you are viewing. Be sure and view any attachments. High resolution 2D spectra.pdf 410.05 KB Related Articles High Resolution 2D spectra 13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented. High Mass Resolution MALDI-Imaging MS: High Stability of Peak Position during Imaging MS Measurement Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-Imaging MS) is a powerful tool for the biochemical analyses of surfaces. Previously, this technique has been used to determine the spatial distribution of hundreds of unknown compounds in thinly sliced tissue sections. The mass spectral images are generated by changing the laser irradiation point at regular intervals across the sample surface and collecting a mass spectrum for each point. Time-of-flight mass spectrometers (TOFMS) are widely used as the mass analyzer for MALDI-Imaging MS because they are well matched for the MALDI ionization process. However, the fine structure of the matrix crystals and small irregularities in the tissue surface flatness can cause peak drift in the collected mass spectra that is caused by slight differences in the starting point of the flight path for the ions at each laser irradiation point. As a result, the typical reflectron type TOFMS systems have a difficult time achieving high mass resolution from spot to spot over a thinly sliced biological surface. Conversely, the JEOL JMS-S3000 “SpiralTOFTM”, which has 5-10 times longer flight path than the reflectron type TOF, is able to reduce the effect of this mass drift to achieve high mass resolution and high mass accuracy. In this work, we report the advantages of using the SpiralTOF for MALDI-Imaging MS analyses of lipids in a mouse brain tissue section. High Mass Resolution MALDI-imaging MS Using JMS-S3000 SpiralTOF and msMicroImager Imaging mass spectrometry using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-Imaging) has been expanded during the last decade in biological applications, to assess the distribution of proteins, peptides, lipids, drugs, and metabolites in a tissue specimen. In MALDI-Imaging measurements, a laser irradiation point was scanned on a sample surface to acquire a mass spectrum at each point. Analyzing the mass spectra with two-dimensional position information, localization of compounds with inherent molecular weights can be visualized or the mass spectra for certain regions of interests (ROIs) can be created. The JMS-S3000 SpiralTOF (Fig. 1) is a MALDI-TOFMS, which utilizes the JEOL patented spiral ion optical system. It has a 5-10 times longer flight path than the typical reflectron type MALDI-TOFMS. As a result, it can achieve high mass-resolution to separate peaks that have the same nominal mass but have different exact masses (isobaric separation). On the other hand, there are some issues for analyzing high mass resolution and high lateral resolution MALDI-Imaging raw data with common imaging software options such as Biomap. High Mass Resolution MALDI-MS Imaging Part II: Using the "MALDIVision" from PREMIER Biosoft Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MS Imaging) is a powerful tool for the biochemical analyses of surfaces. Previously, this technique has been used to determine the spatial distribution of hundreds of unknown compounds in thinly sliced tissue sections. The mass spectral images are generated by changing the laser irradiation point at regular intervals across the sample surface and collecting a mass spectrum for each point. Time-of-flight mass spectrometers (TOFMS) are widely used as the mass analyzer for MALDI-MS Imaging because they are well matched for the MALDI ionization process. Ultra-high mass resolution achieving isobaric peak separation is important for lipid profiling using MALDI-Imaging [1, 2]. However, the fine structure of the matrix crystals and small irregularities in the tissue surface flatness can cause peak drift in the collected mass spectra that is caused by slight differences in the starting point of the flight path for the ions at each laser irradiation point. As a result, the typical reflectron type TOFMS systems have a difficult time achieving high mass resolution from spot to spot over a thinly sliced biological surface. High Resolution and High Mass Accuracy MALDI-ISD Measurements Matrix assisted laser desorption/ionization (MALDI) combined with in-source decay (ISD) is a useful tool for doing top-down sequencing of intact proteins. This technique can provide enough information to determine both N- and C-terminal sequences. In this work, we measured the ISD fragment ions generated for several peptides using the JEOL SpiralTOF MALDI-MS system. The occupied/emptied sites analysis of Lithium Titanium Oxide anodes: How can we obtain high resolution solid state Lithium NMR spectra? _NM200001E Lithium ion secondary batteries using spinel-type lithium titanium oxide (LTO) as the negative electrode material are excellent in safety and cycle characteristics due to their chemical stability, and have already been put into practical use. Showing 0 Comment Comments are closed.