Analytical Instrument Documents

Structural analysis by NMR can provide not only a planar molecular structure but also three-dimensional structural information. In this Note, we describe a method for obtaining information on dihedral angles by using 1H-1H coupling constants (JHH values). For example, hydrogen atoms attached to a cyclohexane ring are either located in axial or equatorial positions in respect to the cyclohexane ring (Fig. 1). The dihedral angles between vicinal protons are known to be ∠Hax-C-C-Hax ≈ 180°, ∠Hax-C-Heq ≈ 60°, and ∠Heq-C-C-Heq ≈ 60°. If we look at the Karplus curve shown in Fig. 2, we can see that 3JHH of around 4 Hz can be expected in the case of the dihedral angle of 60°, while 3JHH of around 13 Hz corresponds to the dihedral angle of 180°. In reality, 3JHH values depend on substituents attached to the cyclohexane ring in substituted cyclohexanes, so the analysis is not straightforward, but the basic trend of having a larger J-value for a 180° dihedral angle compared to a 60° dihedral angle remains unchanged. Therefore, from the value of 3JHH of the methylene protons, it is possible to differentiate between the dihedral angle of 60° or 180°.

The ROSY (Relaxation Ordered SpectroscopY) is a method in which the 13C CPMAS spectrum of a mixture is classified by a longitudinal relaxation time of 1H, and the 13C CPMAS spectrum is displayed separately for each substance. In solution NMR, each peak in the 1H spectrum has its own longitudinal relaxation time. In solid-state NMR, however, spin diffusion occurs due to the dipolor interaction between 1H, and all 1H have the same longitudinal relaxation in the domain within a certain distance. The 13C spectrum can be separated for each domain by using this difference in relaxation time of 1H. The longitudinal relaxation time (T1H) obtained by the saturation recovery method as shown in Fig.1a is usually used to separate the 13C spectrum of the mixture. The size of the domain that can be separated by this method is about 100 nm. To separate domains smaller than this, a measurement using the relaxation time at rotational flame (T1ρH) obtained by the spinlock method as shown in Fig.1b is effective. The domain size that can be separated by T1ρH is about several nm, and it is possible to determine the phase separation structure of block copolymers and the molecular compatibility.

Diffusion-ordered spectroscopy (DOSY) is a powerful NMR method for the analysis of mixtures. In DOSY, signals in the NMR spectrum are resolved according to the measured diffusion coefficient for each signal, yielding a 2D spectrum which has chemical shift along the x-axis and diffusion coefficient along the y-axis.

NOE (Nuclear Overhauser Effect) correlations  comprise important information to estimate internuclear distance and determine structure. However, NOE correlation peaks are very weak compared with diagonal peaks in 2D NOESY. For this reason, it is difficult to observe NOE correlation peaks in the vicinity of much larger diagonal peaks.

In this article, we will show the accurate measurements of the diffusion coefficients (D) by using room-temperature ionic liquids (RTIL, IL) as examples.

13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented.

POMMIE (Phase Osacillations to Maximize Editing) is a 13C experiment that, like the more familiar DEPT experiment, utilizes polarization transfer to enhance the intensities of the 13C signals. However, unlike DEPT, POMMIE edits the spectrum by varying pulse phase rather than adjusting pulse flip angle.

Some low-grade, inexpensive NMR sample tubes have large warpage, low wall thickness uniformity, and large distortion, which may adversely affect the resolution. The effect of low-grade sample tubes, such as disposable ones, on the resolution is small in low-field NMR, but it may be noticeable in high-field NMR. In addition, some disposable sample tubes are thicker or thinner than the nominal value and will not fit in the sample holder.

NOAH (NMR by Ordered Acquisition using 1H-detection)[1] is a group of nested NMR experiments combining several conventional two-dimensional (2D) NMR pulse sequences, such as COSY, HSQC and HMBC, into one supersequence. Therefore, two or more 2D NMR data can be obtained from a single NOAH experiment. By using a single relaxation delay, the NOAH method significantly reduces the total data collection time and increases the throughput of an NMR instrument in structure elucidation of small organic molecules.

13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences