PRODUCTS

Electron Optic Documents

JEOL Resources

rss

Documents of interest in support of your JEOL product

The F2 is a new concept of 20-200kV TEM equipped with a Cold FEG. This new generation of multi-purpose electron microscope is designed specifically to meet today’s diversified needs. Thanks to the high brightness and small probe size of the Cold FEG, the F2 is able to reach an unprecedented guaranteed resolution for STEM (0.14nm), EDS (1.7sr) and EELS (0.3eV) at the same time; creating a new class of high-end non-corrected TEM.

The F2 is a new concept of 20-200kV TEM. This new generation of multi-purpose electron microscope is designed specifically to meet today's diversified needs. Thanks to the high brightness and small probe size, the F2 is able to reach an unprecedented guaranteed resolution for STEM (0.14nm), EDS (1.7sr) and EELS (0.3eV) at the same time, creating a new class of high-end non-corrected TEM.

The F2 incorporates a new, intuitive user interface specifically designed for analytical electron microscopy. This new interface integrates many improvements for the TEM control, such as; automatic functions (auto brightness/contrast, auto focus, auto Z, auto stigmator), coma free auto alignment and off-line data processing (Analysis Center). The software can be tuned at your convenience to provide you with the best working environment.

Resolution can be improved for all accelerating voltages.

Using a multi-hole imaging scheme, researchers have been able to reach a hitherto unprecedented milestone of 20,000 images/day on both a CRYO ARM™ 300 II and a JEM-F200. Given that many structures on EMPIAR have required around 5000 images, essentially 4-5 projects can be accomplished on a daily basis, which opens up new opportunities for routine high resolution structure determination at unprecedented levels.

High resolution structure determination by electron cryo-microscopy (cryoEM) and Single Particle Analysis (SPA) has progressed to the point where structures can routinely be determined to be better than 2Å resolution using either a 200 or a 300 kV microscope. At 1.8Å resolution, details like amino acid isoforms can be distinguished. This application note highlights improved results that were obtained on apoferritin at 1.34Å resolution that hint at new features.

JEM-F200 "F2" Product Brochure

Determining the near-atomic resolution structure of a biological macromolecule requires time on a high-end electron cryo-microscope. Depending on the local situation this could mean acquiring images of frozen-hydrated specimens on a JEOL CRYO ARM™ and/or another cryo microscope. To optimize inter-operability between different brands of cryo-microscopes, JEOL have investigated two related aspects: a) the reverse transfer, that is extracting frozen-hydrated specimens from one microscope to be transferred to another one, and b) the usability of a special cartridge designated as AG that are AutoGrid compatible.

Data set for observing ferromagnetic samples. The mode has no magnetic field around samples.

Using Minimal Fringe Illumination and Coma-Free Image Shift an unprecedented throughput is possible on a JEOL CRYO ARM™. Given that a typical structure as published on EMPIAR requires 4-5000 images, the potential therefore exists of solving roughly 4-5 structures per day using a JEOL CRYO ARM™.

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
    • JEOL USA, Inc.
      11 Dearborn Road
      Peabody, MA 01960
      © Copyright 2022 by JEOL USA, Inc.