Analytical Instrument Documents

JEOL Resources


Documentation in support of your JEOL product.

Power-Dependent Characteristics of Spin Current Transfer in Metal Bilayer Devices under High-Power Pulse Excitation


The power-dependent transfer characteristics of spin currents generated at the interface of the permalloy/Pt bilayer device have been investigated over a wide power range from a few tens of milliwatt to 396 W. We built a high-power pulse excitation system for spin pumping, which achieves large electromotive force (EMF) values of 10 mV at 396 W excitation through the inverse spin Hall effect (ISHE) and demonstrates that the EMF generation after pulse excitation is very fast. Under strong pulse microwave excitation more than 80 W, the EMF spectrum exhibits an asymmetrical lineshape, which is well reproduced by simulations that take into account the fold-over effect due to the nonlinear ferromagnetic resonance excitation. The maximum output power at an external load through spin pumping and the ISHE is shown to increase in proportion to the square of the input microwave power (Pin) in the power range below 80 W. This power generation proportional to Pin2 is unique to spin current-mediated power flow. In the strong excitation regime with the fold-over type EMF spectra, the EMF values of the peak magnetic field position are found to increase less linearly due to spectral broadening. This feature can be used for power generation that increases nonlinearly with respect to the input excitation power, where the nonlinearity is adjusted by varying the magnetic field position.

Please click this link to view the article:

Showing 0 Comment

Comments are closed.

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    Privacy Policy
    Cookie Preferences