Rapid Identification of Smokeless Powders March 4, 2020 4. Forensics, AccuTOF™ DART®, Application Note, Mass Spectrometry (MS), Yokogushi (Cross-platform Analysis) 0 Introduction Smokeless powders (Figure 1) are often used in improvised explosive devices. The formulations for smokeless powders vary between manufacturers and between brands from a given manufacturer; ingredients include energetics, stabilizers, plasticizers and deterrents. Both chemical composition and morphology are important in characterizing smokeless powders. Chemical analysis of smokeless powders can provide valuable forensic evidence. Observation with the SEM can reveal morphological information to help with identification. Here we show how SEM-EDS analysis can be used to identify inorganic components, and how the AccuTOF-DART mass spectrometer can rapidly identify the organic components and provide a chemical fingerprint that can be used to identify individual powder particles. Experimental The AccuTOF™ mass spectrometer was operated in positive-ion mode. Polyethylene glycol (PEG-600) was measured as a reference standard within each data file, but separate from the smokeless powder particle measurements. Individual particles sampled with vacuum tweezers were positioned in the DART gas stream for analysis (Figure 2). Disposable vacuum tweezers were constructed by passing a glass capillary through an Eppendorf pipette tip and inserting the pipette tip into a rubber hose connected to a low-vacuum pump. Data were acquired by using JEOL Mass Center software and mass spectra were processed by TSSPro3 software (Shrader Software Solutions, Detroit, MI). The DART ion source was operated with a gas heater temperature setting of ≤200°C to avoid damaging or detonating the smokeless powder particles. Individual samples could be analyzed within seconds. As long as the gas heater temperature did not exceed 200°C, the samples were not consumed and could be examined or reanalyzed at a later time. For full details: Attached files often contain the full content of the item you are viewing. Be sure and view any attachments. Smokeless Powder Yokogushi Apps Note.pdf 458.61 KB Related Articles AccuTOF-DART® Analysis of Smokeless Powders Smokeless powders (Figure 1) are often used in improvised explosive devices. The formulations for smokeless powders vary between manufacturers and between brands from a given manufacturer; ingredients include energetics, stabilizers, plasticizers and deterrents. Chemical analysis of smokeless powders can provide valuable forensic evidence. Here we show that the AccuTOF-DART mass spectrometer can rapidly identify the organic components in smokeless powders and provide a chemical fingerprint that can be used to identify individual powder particles. Rapid detection of fentanyl, fentanyl analogues, and opioids for on-site or laboratory based drug seizure screening using thermal desorption DART-MS and ion mobility spectrometry Fentanyl and fentanyl analogues represent a current and emerging threat in the United States as pure illicit narcotics and in mixtures with heroin. Because of their extreme potency, methods to safely and rapidly detect these compounds are of high interest. This work investigates the use of thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) and ion mobility spectrometry (IMS) as tools for the rapid and sensitive (nanogram to picograms) detection of fentanyl, 16 fentanyl analogues, and five additional opioids. Competitive ionization studies highlight that detection of these compounds in the presence of heroin is readily achievable, down to 0.1% fentanyl by mass with TD-DART-MS. With IMS, detection of nanogram levels of fentanyl in a binary fentanyl and heroin mixture is possible but can be complicated by decreased resolution in certain commercial instrument models. Modifications to the alarm windows can be used to ensure detection of fentanyl in binary mixtures. Additionally, three complex background matrices (fingerprint residue, dirt, and plasticizers) are shown to have a minimal effect of the detection of these compounds. Wipe sampling of the exterior of bags of questioned powders is shown to be a safe alternative method for field screening and identification, removing the need to handle potentially lethal amounts of material. High Resolution LC/MS for Analysis of Minor Components in Complex Mixtures: Identification of Impurities and Degradation Products of a Novel Oligosaccharide Antibiotic In this work, we report the identification of impurities and degradation products of Ziracin, a member of the Everninomicin class of antibiotics. Everninomicins belong to an important group of oligosaccharides, isolated from the fermentation broth, Micromonospora Carbonaceae, and are found to be highly active against Gram-positive bacteria including Methicillin resistant Staphylococci and Vancomycin resistant Enterococci. With the emergence of drug resistant strains of bacteria, a major effort is being directed towards the reevaluation of the efficacy of existing oligosaccarides and identification of new potential oligosaccaride antibiotics. Currently, the Everninomicin antibiotic Ziracin (SCH27889, Schering-Plough Corporation) is undergoing extensive trials to determine its clinical efficacy. Preliminary results suggest that Ziracin is safe and effective and if it proves successful in the large scale clinical trials, it could become a very important drug for treatment of human infections. Rapid Characterization of Bacteria Using ClairScope™ and SpiralTOF™ In many fields such as clinical diagnosis and food inspection, there is a demand for rapid, reliable and simple-to-use methods for characterizing bacteria. This paper explores the use of two new and innovative instruments called ClairScope™ and SpiralTOF™ for this rapid characterization. The JASM-6200 ClairScope™ integrates an optical microscope (OM) with a scanning electron microscope (SEM) where it is possible to observe samples in solution, in an open system, by the SEM at atmospheric pressure. This type of sample would typically require extensive sample pretreatment that would take a day or more with conventional SEM techniques. With the recently developed ClairScope™, fine morphological observation can be performed directly in solution with simple sample pretreatment of one hour or less. The JMS-S3000 SpiralTOF™, is a matrix-assisted laser desorption/ionization mass spectrometer (MALDI-MS) with a spiral ion trajectory. With sample pretreatment as fast as a few minutes, the SpiralTOF™ can characterize ribosomal proteins and phospholipids with high accuracy. Ribosomal proteins are biomarkers for phylogenetic classification, and phospholipids are used for chemotaxonomic analysis. The combination of ClairScope™ and SpiralTOF™ are found to be powerful instruments for the characterization of bacteria. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required. Rapid Detection and Exact Mass Measurements of Trace Components in an Herbicide Analytical chemists are often asked to identify trace components in manufactured compounds such as drugs, consumer products, and agricultural chemicals. A common approach to the identification of minor components is to use gas or liquid chromatography coupled with high-resolution mass spectrometry. Although this approach is effective, it may be time consuming and difficult to set up. The AccuTOF with Direct Analysis in Real Time (DART™) provides a rapid solution. The high dynamic range of both source and detector permit the determination of minor components in the presence of a major component. The AccuTOF always provides high resolution data with exact mass measurements and accurate isotope ratios that can provide elemental composition assignments for unknown compounds. Showing 0 Comment Comments are closed.