PRODUCTS

Electron Optic Documents

JEOL Resources

rss

Documents of interest in support of your JEOL product

The combination of Scanning electron microscope (SEM) imaging and embedded microanalysis (EDS) offers the perfect combination of direct particle visualization and chemical information at the same time. The recent emergence of automated solutions and multi area analyses has brought this technique to the forefront of the available automated particle analysis solutions.

For people who are using the SEM for the first time. Includes topics such as What is the SEM, Observation  Examples, Specimen Preparation and Observation Technique, Functions of SEM's Individual Components, New Functions of SEM, Comparison of Scanning Electron Microscope with Optical Microscope and Transmission Electron Microscope, and Description of Terms.

SEM is a natural extension to viewing specimens with an optical microscope due in part to its inherent higher depth of field and ability to resolve smaller microstructures. Creating a 3-dimensional (3D) surface model can further enhance our understanding with specimens that have complex topographical features.

JEOL SEMs are delivered with the capability for remote viewing and remote operation. The SEM computer includes a 2nd ethernet card for connection to your local area network. There is no need for a second support computer. Just connect your JEOL SEM computer to a reliable and fast broadband internet connection and choose the software platform that meets your remote access requirements.

JSM-IT700HR Product Brochure

JEOL’s large chamber SEMs are designed for easy access in both the Tungsten SEM and Thermal Schottky Field Emission SEM models. Our large, direct-access sample chambers are ideal suited for the labs that require high-throughput and multi-sample imaging and analysis, multiple ports to fit a variety of accessories, and analysis of large samples that cannot be cut to size.

Our new generation of low vacuum secondary electron detector (LVSED) provides enhanced performance at fast scan speeds and even greater collection efficiency. Why choose LVSED imaging over backscattered electron (BSE)? Considering electron-beam sample interaction, SE imaging can provide better overall spatial resolution as well as the ability to observe fine topographic detail when compared to BSE imaging. This is especially true when imaging low Z materials where interaction volumes can be high with BSE imaging.

The SHL is a newly designed objective lens for high-resolution observation at low accelerating voltages. Unlike the semi-in lens SEM, with a large electromagnetic field below the lens, which was widely used for high-resolution, low kV observation, the SHL achieves high resolution by superimposing a magnetic field onto the electrostatic field to suppress magnetic field leakage. Therefore, the SHL is suitable for the high resolution observation of magnetic materials and electron backscattered diffraction (EBSD) even at short WD, which were difficult with the semi-in lens type SEMs. The SHL type SEM can also be configured for low vacuum operation while the semi-in lens type cannot.

STEM-in-SEM (Scanning Transmission Electron Microscopy in an SEM) has become a popular technique for biologists, polymer scientists and materials scientists for its ease of use, cost effectiveness and high resolution. It is especially suited to investigation of the internal structure of thin film (50-100nm) samples as well as size and shape of submicron to nanometer particles. With standard SEM imaging modes and EDS analysis on bulk samples, there are limitations in the ultimate resolution that can be achieved due in part to the beam-sample interactions. With STEM-in-SEM, the sample is very thin and the interaction volume is greatly reduced, which allows for sub-nanometer resolution and nanoscale analysis. One of the main challenges to EDS analysis using STEM-in-SEM is how to reduce the hard X-ray contribution from the detector and chamber (generally peaks from Al and Si). JEOL has designed a dedicated Analytical holder with a carbon retainer that greatly reduces these spurious peaks allowing for more accurate analytical data.

The ability to increase the probe current for fast microanalysis, while still maintaining a small spot size and small volume of excitation for high resolution, has been the holy grail of microanalysis in SEM. One of the unique features of JEOL’s FE SEMs is the patented Aperture Angle Control Lens (ACL). This lens automatically optimizes for both high resolution imaging at low probe currents and high spatial resolution X-ray analysis at high probe currents with a seamless transition between the two. This is essential for rapid analysis and superb image quality and is particularly true for low kV microanalysis. The ACL works by considering effects of all aberrations (spherical, chromatic and diffraction limitations) on spot size and automatically optimizing the convergence angle.

Other Resources

  • Image Gallery
    View a selection of electron images
  • FAQs
    See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    View our page of useful and interesting links to various electron microscopy resources
  • Videos
    View some product presentations of our instruments
    • JEOL USA, Inc.
      11 Dearborn Road
      Peabody, MA 01960
      © Copyright 2022 by JEOL USA, Inc.