Analytical Instrument Documents

rss

JEOL Resources

Documentation in support of your JEOL product.

Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy

Atomic-level characterization of active pharmaceutical ingredients (API) is crucial in pharmaceutical industry because APIs play an important role in physicochemical properties of drug formulations. However, the analysis of targeted APIs in intact tablet formulations is less straightforward due to the coexistence of excipients as major components and different APIs at dilute concentrations (often below 10 ​wt% loading). Although solid-state (ss) NMR spectroscopy is widely used to investigate short-range order, polymorphism, and pseudo-polymorphism in neat pharmaceutical compounds, the analysis of complex drug formulations is often limited by overlapped signals that originate from structurally different APIs and excipients. In particular, such examples are frequently encountered in the analysis of 1H ssNMR spectra of pharmaceutical formulations. While the high-resolution in 1H ssNMR spectra can be attained by, for example, high magnetic fields accompanied by fast magic-angle spinning (MAS) approaches, the spectral complexity associated with the mixtures of compounds hinders the accurate determination of chemical shifts and through-space proximities. Here we propose a fast MAS (70 ​kHz) NMR experiment for the selective detection of 1H signals associated with an API from a severely overlapped NMR spectrum of a tablet formulation. Spectral simplification is achieved by combining (i) symmetry-based dipolar recoupling (SR412) rotational-echo saturation-pulse double-resonance (RESPDOR) with phase-modulate (PM) saturation pulses, (ii) radio frequency-driven recoupling (RFDR), and (iii) double-quantum excitation using Back-to-Back (BaBa) pulse sequence elements. First, 1H sites in close proximities to 14N nuclei of an API are excited using a PM-S-RESPDOR sequence, and simultaneously, the other unwanted 1H signals of excipients are suppressed. Then, 1H magnetization transfer to adjacent 1H sites in the API is achieved by spin diffusion process using a RFDR sequence, which polarizes to 1H sites within the crystalline API regions of the drug formulation. Next, a PM-S-RESPDOR-RFDR sequence is combined with a Back-to-Back (BaBa) sequence to elucidate local-structures and 1H–1H proximities of the API in a dosage form. The PM-S-RESPDOR-RFDR-BaBa experiment is employed in one- (1D) and two-dimensional (2D) versions to selectively detect the 1H ssNMR spectrum of l-cysteine (10.6 ​wt% or 0.11 ​mg) in a commercial formulation, and compared with the spectra of neat l-cysteine recorded using a standard BaBa experiment. The 2D 1H double-quantum−single-quantum (DQ-SQ) spectrum of the API (l-cysteine)-detected pharmaceutical tablet is in good agreement with the 2D 1H DQ-SQ spectrum obtained from the pure API molecule. Furthermore, the sensitivity and robustness of the experiment is examined by selectively detecting 1H{14N} signals in an amino acid salt, l-histidine.H2O.HCl.

Development of 19F‐detected 1,1‐ADEQUATE for the characterization of polyfluorinated and perfluorinated compounds

Polyfluorinated and perfluorinated compounds in the environment are a growing health concern. 19F‐detected variants of commonly employed heteronuclear shift correlation experiments such as heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are available; 19F‐detected experiments that employ carbon–carbon homonuclear coupling, in contrast, have never been reported. Herein, we report the measurement of the 1JCC and nJCC coupling constants of a simple perfluorinated phthalonitrile and the first demonstration of a 19F‐detected 1,1‐ADEQUATE experiment.

Separation of 13C spectra of polyurethane soft and hard segments by ROSY_NM200013E

The ROSY (Relaxation Ordered SpectroscopY) is a method in which the 13C CPMAS spectrum of a mixture is classified by a longitudinal relaxation time of 1H, and the 13C CPMAS spectrum is displayed separately for each substance. In solution NMR, each peak in the 1H spectrum has its own longitudinal relaxation time. In solid-state NMR, however, spin diffusion occurs due to the dipolor interaction between 1H, and all 1H have the same longitudinal relaxation in the domain within a certain distance. The 13C spectrum can be separated for each domain by using this difference in relaxation time of 1H. The longitudinal relaxation time (T1H) obtained by the saturation recovery method as shown in Fig.1a is usually used to separate the 13C spectrum of the mixture. The size of the domain that can be separated by this method is about 100 nm. To separate domains smaller than this, a measurement using the relaxation time at rotational flame (T1ρH) obtained by the spinlock method as shown in Fig.1b is effective. The domain size that can be separated by T1ρH is about several nm, and it is possible to determine the phase separation structure of block copolymers and the molecular compatibility.

Application for fluorine compounds_NM200004E

The ROYALPROBE™ HFX can simultaneously irradiate 1H, 19F, and 13C (or other X-nuclei) even in a basic console with basic two-channel console, and is a versatile probe that can measure a wide-variety of nuclei at high sensitivity. Here we introduce some useful experiments for fluorine-containing compounds that can be run on conjunction with JNM-ECZ400S equipped with ROYALPROBE™ HFX.

Experimental set-up of high-resolution 1H solid-state NMR by wPMLG_NM200010E

1H, in principle, is very useful nucleus to investigate atomic-resolution structures and dynamics due to its high abundance (>99%) and gyromagnetic ratio (600 MHz at 14.1T). In fact 1H is the first choice of nucleus in solution NMR. On the other hand, 1H NMR of rigid solids is much less common. This is because 1H solid-state NMR gives very broad (~50 kHz) and featureless spectra (Fig 1a) due to strong 1H-1H dipolar coupling, which is dynamically averaged out in solution. Magic angle spinning (MAS) removes the broadening to the first order, but is not enough to achieve high resolution 1H NMR at moderate MAS rate (Fig 1b). Tremendous efforts were made to overcome this issue from the early dates of solid-state NMR towards high-resolution 1H NMR [1]. Most of them combine MAS with sophisticated 1H pulses which is dubbed CRAMPS (combined rotation and multiple pulse spectroscopy). Nowadays very fast MAS > 60 kHz can be used to achieve high-resolution 1H solid-state NMR (Fig 1c) [2]. However, the traditional CRAMPS is still useful as that can be performed with very conventional solid-state NMR equipment, for example 4 mm MAS probe with a 400 MHz spectrometer. Moreover, wPMLG at moderate MAS rate often overwhelms fast MAS in terms of resolution. In this note, we will describe tutorial guidance to optimize experimental parameters for CRAMPS.

2D homonuclear correlation 1H solid-state NMR by wPMLG_NM200011E

Multidimensional correlation NMR spectroscopies, which provides inter-nuclear proximity/connectivity, play a crucial role to probe the atomic resolution structures. Especially, 1H-1H homonuclear correlation spectroscopy is quite useful source of information because of high abundance (>99%) and gyromagnetic ratio, thus resulting in strong inter nuclear interactions. Thanks to the development of high resolution 1H solid-state NMR, now it is feasible to observe 1H-1H correlation high resolution solid-state NMR [1]. There are two distinctive categories; 1) single quantum (SQ)/SQ correlation and 2) double quantum (DQ)/SQ correlations. In this note we introduce 2D 1H SQ/ 1H SQ and 1H DQ/ 1H SQ correlation spectroscopy to probe the internuclear proximity using high-resolution 1H solid-state NMR techniques.

Other Resources

The following resources are available for the JEOL Analytical Instruments:

Media

Corona - Glow Discharge (DART Ion Source)

February 22, 2020
888