Analytical Instrument Documents


JEOL Resources

Documentation in support of your JEOL product.

Metal-Templated Oligomeric Macrocyclization via Coupling for Metal-Doped π-Systems

A method for the synthesis of metal-doped aromatic macrocycles has been developed. The method, i.e., metal-templated oligomeric macrocyclization via coupling, adopts Ni as the template and assembles five pyridine units via a Ni-mediated coupling reaction to form aryl–aryl linkages. A pentameric oligopyridyl macrocycle was selectively obtained in good yield, and the reaction was also applicable to a gram-scale synthesis. The pentameric oligopyridyl macrocycle captured d8-Ni(II) at the center to form a paramagnetic pentagonal-bipyramidal complex. The method was applied to the synthesis of a large π-molecule to afford a nanometer-sized, bowl-shaped molecule having a unique combination of 120π and 8d electrons.

Optically active covalent organic frameworks and hyperbranched polymers with chirality induced by circularly polarized light

Axial chirality was induced by circularly polarized light to covalent organic frameworks as well as hyperbranched polymers composed of bezene-1,3,5-triyl core units and oligo(benzene-1,4-diyl) as linker units where variation in induction efficiency was rationally interpreted in terms of internal rotation dynamics studied through CPMAS 13C NMR experiments including CODEX measurements.

Structure Solution of Nano-Crystalline Small Molecules Using MicroED and Solid-State NMR Dipolar-Based Experiments

Three-dimensional electron diffraction crystallography (microED) can solve structures of sub-micrometer crystals, which are too small for single crystal X-ray crystallography. However, R factors for the microED-based structures are generally high because of dynamic scattering. That means R factor may not be reliable provided that kinetic analysis is used. Consequently, there remains ambiguity to locate hydrogens and to assign nuclei with close atomic numbers, like carbon, nitrogen, and oxygen. Herein, we employed microED and ssNMR dipolar-based experiments together with spin dynamics numerical simulations. The NMR dipolar-based experiments were 1H-14N phase-modulated rotational-echo saturation-pulse double-resonance (PM-S-RESPDOR) and 1H-1H selective recoupling of proton (SERP) experiments. The former examined the dephasing effect of a specific 1H resonance under multiple 1H-14N dipolar couplings. The latter examined the selective polarization transfer between a 1H-1H pair. The structure was solved by microED and then validated by evaluating the agreement between experimental and calculated dipolar-based NMR results. As the measurements were performed on 1H and 14N, the method can be employed for natural abundance samples. Furthermore, the whole validation procedure was conducted at 293 K unlike widely used chemical shift calculation at 0 K using the GIPAW method. This combined method was demonstrated on monoclinic l-histidine.

Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS

Orientationally-dependent interactions such as dipolar coupling, quadrupolar coupling, and chemical shift anisotropy (CSA) contain a wealth of spatial information that can be used to elucidate molecular conformations and dynamics. To determine the sign of the chemical shift tensor anisotropy parameter (δaniso), both the |m| ​= ​1 and |m| ​= ​2 components of the CSA need to be symmetry allowed, while the recoupling of the |m| ​= ​1 term is accompanied with the reintroduction of homonuclear dipolar coupling components. Therefore, previously suggested sequences which solely recouple the |m| ​= ​2 term cannot determine the sign a 1H's δaniso in a densely-coupled network. In this study, we demonstrate the CSA recoupling of strongly dipolar coupled 1H spins using the Cnn/1(9003601805400360180900) sequence. This pulse scheme recouples both the |m| ​= ​1 and |m| ​= ​2 CSA terms but the scaling factors for the homonuclear dipolar coupling terms are zeroed. Consequently, the sequence is sensitive to the sign of δaniso but is not influenced by homonuclear dipolar interactions.

Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS

Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.

Selective 1H–1H recoupling via symmetry sequences in fully protonated samples at fast magic angle spinning

Proton-detected solid-state NMR at fast Magic Angle Spinning (MAS) is becoming the norm to characterize molecules. Routinely 1H–1H and 1H-X dipolar couplings are used to characterize the structure and dynamics of molecules. Selective proton recoupling techniques are emerging as a method for structural characterization via estimation of qualitative and quantitative distances. In the present study, we demonstrate through numerical simulations and experiments that the well-characterized CNvn sequences can also be tailored for selective recoupling of proton spins by employing C elements of the type (β)Φ(4β)Φ+π(3β)Φ. Herein, several CNvn sequences were examined through numerical simulations and experiments. C614 recoupling sequence with a modified POST-element ((β)Φ(4β)Φ+π(3β)Φ) shows selective polarization transfer efficiencies on the order of 40–50% between various proton spin pairs in fully protonated samples at rf amplitudes ranging from 0.3 to 0.8 times the MAS frequency. These selective recoupling sequences have been labeled as frequency-selective-CNvn sequences. The extent of selectivity, polarization transfer efficiency and the feasibility of experimentally measuring proton-proton distances in fully protonated samples are explored here. The development of efficient and robust selective 1H–1H recoupling experiments is required to structurally characterize molecules without artificial isotope enrichment or the need for diffracting crystals.

Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy

Highlights: • Selective detection of 1H signals of API in a tablet formulation is proposed. • 1H signals of excipients are suppressed. • 1H signals in the vicinity of nuclei (here 14N) which only appear in API are excited. • 1H{14N} magnetization is diffused to 1Hs in API crystals by RFDR recoupling.

Dynamic Transformation Between Covalent Organic Frameworks And Discrete Organic Cages

We propose a dynamic covalent chemistry (DCC)-induced linker exchange strategy for the structural transformation between covalent organic frameworks (COFs) and cages for the first time. Studies have shown that the COF-to-cage and cage-to-COF transformations were realized by using borate bonds and imine bonds, respectively, as linkages. Self-sorting experiments suggested that borate cages and imine COFs are thermodynamic minimum compounds. This research builds a bridge between discrete and polymeric organic scaffolds and broadens the knowledge of chemistry and materials for porous materials science.

Other Resources

The following resources are available for the JEOL Analytical Instruments:


Corona - Glow Discharge (DART Ion Source)

January 28, 2022