Analytical Instrument Documents

The applications for lithium ion batteries (LIB) cover a wide range, from power sources for personal computers and mobile devices to automobiles, and there is always a demand for even better performance and safety. In order to ensure the performance and quality of LIB, analysis and evaluation using high-performance assessment systems is necessary. JEOL offers a full line-up of equipment to support the development of new LIB technologies and to improve product quality, including instruments for morphology observation and surface analysis, chemical analysis systems to perform structural analysis on a molecular level, as well as fabrication systems to create high-performance coatings and powders. This LIB note offers solutions for researchers and engineers who are looking for the best equipment for their application.

JEOL offers numerous analytical tools to support both "food safety & security" as well as various evaluations of primary, secondary and tertiary functions of foodstuffs which are useful for a wide range of users associated with this field. This Foodnote introduces the features of each of the instruments and actual analysis examples, and is designed for researchers and engineers who are considering purchases of instruments. This brochure also presents comprehensive evaluations and analysis solutions that can be achieved with combinations of multiple instruments.

This Bionote presents an overview of the basics, namely principles and features of various instruments, as well as application examples using numerous optional attachments. We hope that the Bionote will assist researchers and engineers who intend to perform analyses in finding and exploring new approaches.

The JMS-S3000 "SpiralTOF™" is a MALDI-TOFMS that incorporates an innovative SpiralTOF ion optics system. The JMS-S3000 is available with a TOF-TOF option that can acquire high-energy collision-induced dissociation (CID) product ion spectra for monoisotopically selected precursor ions.

High molecular weight polymers are often MS-silent due to their inherent high dispersity (DM) or detected in the high mass range with low resolving power. An "on-plate" alkaline degradation has thus been developed as a sample pre-treatment on the MALDI target with tenths of ng of polymer to cut long industrial polyester chains into short oligomers amenable to MALDI-HRMS.

The JMS-S3000 "SpiralTOF™" is a MALDI-TOF MS incorporating an innovative SpiralTOF™ ion optics system. JEOL's patented technology achieves a spiral ion trajectory of 17m within a compact 1m space.

The JMS-S3000 SpiralTOF has a unique 17m flight path that offers then highest resolution MALDI-TOF MS system currently available. However, ions with a very short lifetime or that undergo spontaneous dissociation during their flight cannot be detected by the SpiralTOF (or a conventional reflection TOF). To address this situation, the SpiralTOF with Linear TOF option can be used for the high sensitivity analysis of intact proteins.

Diesel Fuel Analysis by GCxGC/EI (Hydrocarbon Classification); Biomarker Analysis by GCxGC/PI (Target Analysis using 2D EICC); Type Analysis by GCxGC/FI (Hydrocarbon Type Analysis); Synthetic Polymer Analysis by Pryolysis GCxGC/EI and FI (Unknown Compounds Analysis in Nylon 66); Additives Analysis by Pyrolysis GCxGC/EI and FI (Targeted Additives Analysis in Nitrile Butadiene Rubber); Natural Polymer Analysis by Pyrolysis GCxGC/EI and PI (Powerful Separation of the Main Components in a Japanese Lacquer Film); Soluble Organic Fraction Analysis by GCxGC/EI (Analysis of PAHs in Exhaust Gas); Electronic Waste Analysis by GCxGC/EI and Negative CI (Halogenated Compounds Analysis); Aroma Oil (Fragrance) Analysis by GCxGC/EI and FI (Molecular ion detection for Alcohol compounds); Sebum Analysis by GCxGC/EI (Pharmaceutical application)

Hemp is a strain of Cannabis sativa that has multiple industrial uses including paper, plastics, woven goods, and even food. While certain strains of Cannabis sativa are well-known for their use as a recreational drug due the presence of the psychoactive compound tetrahydrocannabinol (THC), hemp strains are defined by the U.S. federal government as those that contain less than 0.3% THC.1 Additionally, hemp strains typically contain more cannabidiol (CBD),2 which was recently approved by the FDA to treat certain types of epilepsy, and is currently being investigated as a medical treatment for other afflictions.

Introduction: In recent years, polymer materials have become more complex due to increased composition and diversification so that a one-sided analysis is insufficient and multifaceted observations and analyses are required. In response to this need, JEOL has engaged in applied research under the keyword of "YOKOGUSHI" (multifaceted cross-instrumental) using various instruments organically. In this Urushi Note, multifaceted analysis methods for polymer materials are illustrated using the examples of natural lacquer (urushi) analysis.

rss

Other Resources

Image Gallery
  • View a selection of NMR and MS spectra
  • Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • Media

    Corona - Glow Discharge (DART Ion Source)

    January 28, 2022
    2713
    JEOL Ltd. global website
      JEOL USA, Inc.
      11 Dearborn Road
      Peabody, MA 01960
      © Copyright 2023 by JEOL USA, Inc.
      Terms of Use
      |
      Privacy Policy
      |
      Cookie Preferences