Analytical Instrument Documents

POMMIE (Phase Osacillations to Maximize Editing) is a 13C experiment that, like the more familiar DEPT experiment, utilizes polarization transfer to enhance the intensities of the 13C signals. However, unlike DEPT, POMMIE edits the spectrum by varying pulse phase rather than adjusting pulse flip angle.

"pure shift" is  method for homo nuclear broad band decoupling. Sensitivity would be reduced, but spectra of only (pure) chemical shifts can be obtained by eliminating j coupling.

"pure shift" is  method for homo nuclear broad band decoupling. Sensitivity would be reduced, but spectra of only (pure) chemical shifts can be obtained by eliminating j coupling.

"pure shift" is  method for homo nuclear broad band decoupling. Sensitivity would be reduced, but spectra of only (pure) chemical shifts can be obtained by eliminating j coupling.

The applications for lithium ion batteries (LIB) cover a wide range, from power sources for personal computers and mobile devices to automobiles, and there is always a demand for even better performance and safety. In order to ensure the performance and quality of LIB, analysis and evaluation using high-performance assessment systems is necessary. JEOL offers a full line-up of equipment to support the development of new LIB technologies and to improve product quality, including instruments for morphology observation and surface analysis, chemical analysis systems to perform structural analysis on a molecular level, as well as fabrication systems to create high-performance coatings and powders. This LIB note offers solutions for researchers and engineers who are looking for the best equipment for their application.

JEOL offers numerous analytical tools to support both "food safety & security" as well as various evaluations of primary, secondary and tertiary functions of foodstuffs which are useful for a wide range of users associated with this field. This Foodnote introduces the features of each of the instruments and actual analysis examples, and is designed for researchers and engineers who are considering purchases of instruments. This brochure also presents comprehensive evaluations and analysis solutions that can be achieved with combinations of multiple instruments.

This Bionote presents an overview of the basics, namely principles and features of various instruments, as well as application examples using numerous optional attachments. We hope that the Bionote will assist researchers and engineers who intend to perform analyses in finding and exploring new approaches.

Introduction: In recent years, polymer materials have become more complex due to increased composition and diversification so that a one-sided analysis is insufficient and multifaceted observations and analyses are required. In response to this need, JEOL has engaged in applied research under the keyword of "YOKOGUSHI" (multifaceted cross-instrumental) using various instruments organically. In this Urushi Note, multifaceted analysis methods for polymer materials are illustrated using the examples of natural lacquer (urushi) analysis.

Some low-grade, inexpensive NMR sample tubes have large warpage, low wall thickness uniformity, and large distortion, which may adversely affect the resolution. The effect of low-grade sample tubes, such as disposable ones, on the resolution is small in low-field NMR, but it may be noticeable in high-field NMR. In addition, some disposable sample tubes are thicker or thinner than the nominal value and will not fit in the sample holder.

NOAH (NMR by Ordered Acquisition using 1H-detection)[1] is a group of nested NMR experiments combining several conventional two-dimensional (2D) NMR pulse sequences, such as COSY, HSQC and HMBC, into one supersequence. Therefore, two or more 2D NMR data can be obtained from a single NOAH experiment. By using a single relaxation delay, the NOAH method significantly reduces the total data collection time and increases the throughput of an NMR instrument in structure elucidation of small organic molecules.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences