This website uses cookies to ensure you get the best experience on our website. Learn more
PRODUCTS

Analytical Instrument Documents

In this work, we compare sensitivity levels when using the combination EI/FI and EI/PI ion sources when He and N2 are used as the GC carrier gas.

Mass spectrometers are commonly combined with separation devices such as gas chromatographs (GC) and liquid chromatographs (LC). The GC or LC separates the components in a mixture, and the components are introduced, one by one, into the mass spectrometer. MS/MS is an analogous technique where the first-stage separation device is another mass spectrometer.

Accurate mass measurements are frequently used to determine the elemental composition for molecular and fragment ions. These measurements are normally obtained by acquiring a high resolution mass spectrum so that the masses are measured for a single species and not measured for unresolved or partially resolved peaks.

What does a mass spectrometer do? What are mass spectrometers used for? What does the mass tell us? How does a mass spectrometer work?

Several different definitions of resolution are used in mass spectrometry. It is useful to understand the distinctions between the different definitions to understand the characteristics of different mass spectrometers.

All mass spectrometers combine ion formation, mass analysis, and ion detection. This discussion is concerned with how various mass analyzers are used to separate ions according to their massto- charge ratio. Each mass analyzer has its own special characteristics and applications and its own benefits and limitations. The choice of mass analyzer should be based upon the application, cost, and performance desired. There is no ideal mass analyzer that is good for all applications. For an excellent and more complete discussion of mass analyzers, see "The Ideal Mass Analyzer: Fact or Fiction?" (Curt Brunnee, Int. J. Mass Spectrom. Ion Proc. 76 (1987), 125-237.

A mass spectrometer works by using magnetic and electric fields to exert forces on charged particles (ions) in a vacuum. Therefore, a compound must be charged or ionized to be analyzed by a mass spectrometer. Furthermore, the ions must be introduced in the gas phase into the vacuum system of the mass spectrometer. This is easily done for gaseous or heat-volatile samples. However, many (thermally labile) analytes decompose upon heating. These kinds of samples require either desorption or desolvation methods if they are to be analyzed by mass spectrometry. Although ionization and desorption/desolvation are usually separate processes, the term "ionization method" is commonly used to refer to both ionization and desorption (or desolvation) methods. The choice of ionization method depends on the nature of the sample and the type of information required from the analysis. So-called 'soft ionization' methods such as field desorption and electrospray ionization tend to produce mass spectra with little or no fragment-ion content.

Double-focusing magnetic sector mass spectrometers provide high sensitivity, high resolution, and a reproducibility that is unmatched in any other kind of mass analyzer.

rss

Other Resources

Image Gallery
  • View a selection of NMR and MS spectra
  • Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • Media

    Corona - Glow Discharge (DART Ion Source)

    January 28, 2022
    2500
      JEOL USA, Inc.
      11 Dearborn Road
      Peabody, MA 01960
      © Copyright 2022 by JEOL USA, Inc.