Analytical Instruments Documents


JEOL Resources

Documentation in support of your JEOL product.

Monitoring Rotary Vacuum Pump Oil Degradation by Using Field Desorption (FD)-TOFMS and Group-type Analysis Software

Field Desorption (FD) is a technique that ionizes analytes by electron tunneling from the analyte molecules to a solid surface (emitter) in a high electric field. The sample is applied directly onto the emitter and heated by applying an electric current through the emitter for desorption and ionization. FD has been used for the analysis of nonvolatile compounds, synthetic polymers, etc., as a soft ionization method to produce molecular ions with little or no fragmentations. As a result, the average molecular weight of a sample can be calculated directly from the masses (or “m/z”) and intensities for all of the ions observed in the FD mass spectrum. Furthermore, by applying group-type analysis, the components can be classified into types based on their functional groups and/or unsaturations. Average molecular weight, polydispersity index, or relative abundance of each type can also be obtained. In this work, new and used rotary vacuum pump (RP hereafter) oils were analyzed by FD. Afterwards, the change in their compositions was determined by performing group-type analysis on the resulting mass spectra.

Analysis of Additives in Plastic by Thermal Desorption (TD)

Among the various methods used for characterizing plastics, pyrolysis (Py) GC/MS and thermal desorption (TD) GC/MS are widely used for both qualitative and quantitative analyses. These are simple techniques that provide detailed information about the samples. In this application note, we report the analysis of additives in plastic by using a thermal desorption system and a JEOL JMS-T100GCV "AccuTOF GCv" GC-TOFMS. Identification of the analytes was accomplished by library search and accurate mass measurement. Additionally, isotope cluster pattern matching was performed using the "Mass Spec Tools™" software to help identify an unknown compound that was present in the sample.

Comprehensive 2D GC coupled with JEOL GC-HRTOFMS: GCxGC Applications

Diesel Fuel Analysis by GCxGC/EI (Hydrocarbon Classification); Biomarker Analysis by GCxGC/PI (Target Analysis using 2D EICC); Type Analysis by GCxGC/FI (Hydrocarbon Type Analysis); Synthetic Polymer Analysis by Pryolysis GCxGC/EI and FI (Unknown Compounds Analysis in Nylon 66); Additives Analysis by Pyrolysis GCxGC/EI and FI (Targeted Additives Analysis in Nitrile Butadiene Rubber); Natural Polymer Analysis by Pyrolysis GCxGC/EI and PI (Powerful Separation of the Main Components in a Japanese Lacquer Film); Soluble Organic Fraction Analysis by GCxGC/EI (Analysis of PAHs in Exhaust Gas); Electronic Waste Analysis by GCxGC/EI and Negative CI (Halogenated Compounds Analysis); Aroma Oil (Fragrance) Analysis by GCxGC/EI and FI (Molecular ion detection for Alcohol compounds); Sebum Analysis by GCxGC/EI (Pharmaceutical application)

Learning Polymer Materials Analysis from Natural Lacquer (Urushi)

Introduction: In recent years, polymer materials have become more complex due to increased composition and diversification so that a one-sided analysis is insufficient and multifaceted observations and analyses are required. In response to this need, JEOL has engaged in applied research under the keyword of "YOKOGUSHI" (multifaceted cross-instrumental) using various instruments organically. In this Urushi Note, multifaceted analysis methods for polymer materials are illustrated using the examples of natural lacquer (urushi) analysis.

JMS-T200GC msFineAnalysis Brochure

For qualitative analysis of High Resolution GC Mass Spec data, JEOL has developed msFineAnalysis software that integrates both EI and soft ionization data (GC/CI, PI, FI) with library search, exact mass, and isotope data. The software compares molecular formula information acquired from the NIST library search with soft ionization exact mass data analysis to ensure accurate qualitative results. It automatically examines the NIST library search results, reduces the possibility of false positive identifications, and selects the correct components from multiple candidates with similar scores. For unknown components not registered in the NIST libraries, it estimates molecular formulas by using the soft ionization data, acquires partial structure information and estimates structural formulas by using the EI data. msFineAnalysis takes qualitative GC-MS analysis to a whole new level, and is a major addition to the capabilities of our AccuTOF-GCx-plus

Integrated Analysis of Fatty Acid Methyl Esters using msFineAnalysis v2 - MSTips 301

Fatty acid methyl esters (FAMEs) are crucial for determining the fat content in food. Being environmentally friendly, they are also increasingly used as bio-diesel fuels. Many of the FAMEs are unsaturated with double bonds in the alkyl chains. As the number of double bonds increases (more unsaturation), the EI measurements tend to lack molecular ions. In this work, we measured a standard sample containing multiple FAMEs using EI and FI to detect their molecular ions. The resulting data was further examined by using msFineAnalysis to produce an integrated report for these compounds in which the library database search was combined with the molecular ion exact mass analysis to produce a qualitative identification of these compounds.

Integrated Analysis of Coffee Aroma by using a Headspace GC-HRMS - MSTips 280

Electron ionization (EI) is a hard ionization method that is commonly used with gas chromatography mass spectrometry (GC-MS). The mass spectral fragmentation patterns produced by EI are used for library database searches to identify compounds. Conversely, soft ionization methods like field ionization (FI) tend to produce clear molecular ions with minimal fragmentation. When high-resolution MS is used with these ionization techniques, the accurate masses for the fragment ions produced by EI and the molecular ions produced by soft ionization provide an additional dimension of information for the analytes. Combining the exact mass information with the results of conventional library search can enhance the accuracy of identification compared to the use of library search alone.  In this work, we introduce the msFineAnalysis software and use it to automatically combine data acquired by GC/EI and GC/soft ionization for the qualitative analysis of coffee headspace.

Integrated Analysis of an Acrylic Resin using msFineAnalysis v2 - MSTips 300

In 2018, msFineAnalysis Ver.1 software was released in which data acquired by EI, soft ionization, and accurate mass measurements were automatically integrated to generate a qualitative report for samples measured by these techniques with GC-MS. Recently, msFineAnalysis Ver.2 was introduced as an enhanced version with additional features. In this work, we will describe the changes in Ver.2, which now includes chromatographic deconvolution, and present applications using the new features.

Other Resources

The following resources are available for the JEOL Analytical Instruments:


Corona - Glow Discharge (DART Ion Source)

February 22, 2020