Analytical Instrument Documents

rss

JEOL Resources

Documentation in support of your JEOL product.

AccuTOF GC Petroleum & Petrochemicals Applications Notebook

The JMS-T200GC  AccuTOF™ GCx-plus is a superior gas chromatograph - high-resolution time-of-flight mass spectrometer (GC-HRTOFMS) system that simultaneously accomplishes high mass-resolution analysis, high mass accuracy, and high-speed data acquisition, satisfying all your needs for petroleum and petrochemical analyses.

Monitoring Rotary Vacuum Pump Oil Degradation by Using Field Desorption (FD)-TOFMS and Group-type Analysis Software

Field Desorption (FD) is a technique that ionizes analytes by electron tunneling from the analyte molecules to a solid surface (emitter) in a high electric field. The sample is applied directly onto the emitter and heated by applying an electric current through the emitter for desorption and ionization. FD has been used for the analysis of nonvolatile compounds, synthetic polymers, etc., as a soft ionization method to produce molecular ions with little or no fragmentations. As a result, the average molecular weight of a sample can be calculated directly from the masses (or “m/z”) and intensities for all of the ions observed in the FD mass spectrum. Furthermore, by applying group-type analysis, the components can be classified into types based on their functional groups and/or unsaturations. Average molecular weight, polydispersity index, or relative abundance of each type can also be obtained. In this work, new and used rotary vacuum pump (RP hereafter) oils were analyzed by FD. Afterwards, the change in their compositions was determined by performing group-type analysis on the resulting mass spectra.

Analysis of Additives in Plastic by Thermal Desorption (TD)

Among the various methods used for characterizing plastics, pyrolysis (Py) GC/MS and thermal desorption (TD) GC/MS are widely used for both qualitative and quantitative analyses. These are simple techniques that provide detailed information about the samples. In this application note, we report the analysis of additives in plastic by using a thermal desorption system and a JEOL JMS-T100GCV "AccuTOF GCv" GC-TOFMS. Identification of the analytes was accomplished by library search and accurate mass measurement. Additionally, isotope cluster pattern matching was performed using the "Mass Spec Tools™" software to help identify an unknown compound that was present in the sample.

Comprehensive 2D GC coupled with JEOL GC-HRTOFMS: GCxGC Applications

Diesel Fuel Analysis by GCxGC/EI (Hydrocarbon Classification); Biomarker Analysis by GCxGC/PI (Target Analysis using 2D EICC); Type Analysis by GCxGC/FI (Hydrocarbon Type Analysis); Synthetic Polymer Analysis by Pryolysis GCxGC/EI and FI (Unknown Compounds Analysis in Nylon 66); Additives Analysis by Pyrolysis GCxGC/EI and FI (Targeted Additives Analysis in Nitrile Butadiene Rubber); Natural Polymer Analysis by Pyrolysis GCxGC/EI and PI (Powerful Separation of the Main Components in a Japanese Lacquer Film); Soluble Organic Fraction Analysis by GCxGC/EI (Analysis of PAHs in Exhaust Gas); Electronic Waste Analysis by GCxGC/EI and Negative CI (Halogenated Compounds Analysis); Aroma Oil (Fragrance) Analysis by GCxGC/EI and FI (Molecular ion detection for Alcohol compounds); Sebum Analysis by GCxGC/EI (Pharmaceutical application)

Learning Polymer Materials Analysis from Natural Lacquer (Urushi)

Introduction: In recent years, polymer materials have become more complex due to increased composition and diversification so that a one-sided analysis is insufficient and multifaceted observations and analyses are required. In response to this need, JEOL has engaged in applied research under the keyword of "YOKOGUSHI" (multifaceted cross-instrumental) using various instruments organically. In this Urushi Note, multifaceted analysis methods for polymer materials are illustrated using the examples of natural lacquer (urushi) analysis.

Other Resources

The following resources are available for the JEOL Analytical Instruments:

Media

Corona - Glow Discharge (DART Ion Source)

February 22, 2020
400