Analytical Instrument Documents

Hemp is a strain of Cannabis sativa that has multiple industrial uses including paper, plastics, woven goods, and even food. While certain strains of Cannabis sativa are well-known for their use as a recreational drug due the presence of the psychoactive compound tetrahydrocannabinol (THC), hemp strains are defined by the U.S. federal government as those that contain less than 0.3% THC.1 Additionally, hemp strains typically contain more cannabidiol (CBD),2 which was recently approved by the FDA to treat certain types of epilepsy, and is currently being investigated as a medical treatment for other afflictions.

Introduction: In recent years, polymer materials have become more complex due to increased composition and diversification so that a one-sided analysis is insufficient and multifaceted observations and analyses are required. In response to this need, JEOL has engaged in applied research under the keyword of "YOKOGUSHI" (multifaceted cross-instrumental) using various instruments organically. In this Urushi Note, multifaceted analysis methods for polymer materials are illustrated using the examples of natural lacquer (urushi) analysis.

Some low-grade, inexpensive NMR sample tubes have large warpage, low wall thickness uniformity, and large distortion, which may adversely affect the resolution. The effect of low-grade sample tubes, such as disposable ones, on the resolution is small in low-field NMR, but it may be noticeable in high-field NMR. In addition, some disposable sample tubes are thicker or thinner than the nominal value and will not fit in the sample holder.

Gas Analysis Solutions with JEOL Mass Spectrometers

We investigated the structural analysis of the polyethylene-terephthalate (PET) polymer exposed to the on-plate alkaline degradation method by using the JMS-S3000 "SpiralTOFTM-plus" with TOF-TOF option. The SpiralTOFTM-plus uses an ultra-high resolution TOF for MS1 which allows monoisotopic precursor selection and a reflectron TOF for MS2 to analyze the product ion spectra produced from high energy collisional induced dissociation (HE-CID).

In this work, we introduce the msFineAnalysis software and use it to automatically combine data acquired by GC/EI and GC/soft ionization for the qualitative analysis of compounds produced by the pyrolysis of a vinyl acetate resin.

In this report, we have applied this combined method to analyze a polyethylene terephthalate (PET) that was degraded by ultraviolet (UV) irradiation.

In this report, we have expanded MALDI-MSI to analyzing a PET film that was exposed to UV radiation. Additionally, a SEM was used to look at the morphological differences in the PET film before and after UV irradiation.

NOAH (NMR by Ordered Acquisition using 1H-detection)[1] is a group of nested NMR experiments combining several conventional two-dimensional (2D) NMR pulse sequences, such as COSY, HSQC and HMBC, into one supersequence. Therefore, two or more 2D NMR data can be obtained from a single NOAH experiment. By using a single relaxation delay, the NOAH method significantly reduces the total data collection time and increases the throughput of an NMR instrument in structure elucidation of small organic molecules.

13C NMR spectra provide wide range chemical shift, and it suggests that can easily distinguish each signals. But carbon resolution of 2D spectra such as HSQC and HMBC is worse than 1D 13C spectra due to small data points. In order to analyze a compound with close 13C chemical shifts, a high resolution 2D spectrum is required frequently. In this document, some improvements to distinguish each signals on 13C axis of 2D hetero nuclear experiments are presented.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2025 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences