Analytical Instrument Documents


JEOL Resources

Documentation in support of your JEOL product.

Analysis of Degraded Polymethyl Methacrylate by UV Irradiation - MSTips 324

Polymers can be degraded by the effects of light, oxygen, heat, etc. so it is important to understand how the polymer structures change during degradation. Pyrolysis gas chromatograph quadrupole mass spectrometer (Py-GC-QMS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOFMS) are powerful tools for analyzing polymeric materials. Py-GC-QMS is a method that instantaneously heats a sample with a pyrolyzer and then analyzes the pyrolysis products by GC-MS. Since most of the pyrolysis products are related to monomers and dimers, this technique allows for easy identification of the polymer substructures which is useful for identifying changes to the polymer when degradation occurs. MALDI-TOFMS involves a soft ionization technique that can directly ionize and analyze the intact polymer molecules and often produces singly-charged ions even for high molecular weight compounds. As a result, the m/z axis of the mass spectrum is equal to the mass of the ions, thus making it easy to interpret polymer distributions. Additionally, when MALDI is used with a high-resolution TOFMS, the accurate mass of each ion in the polymer series can be used to calculate their elemental compositions. Moreover, the molecular weight distribution of polymers can be calculated from the ion intensity distribution. In this work, we used Py-GC-QMS and high-resolution MALDI-TOFMS to evaluate the effects of UV irradiation on polymethyl methacrylate (PMMA).

A comparative study of the photocatalytic and optical properties of spinel-type titanates: A report for spinel sodium titanate

The recent discovery of Na3LiTi5O12 (NTO), which possesses spinel symmetry (, #227) with the 8a site occupied by Na, has enabled investigations into the effect of the 8a-site cation on the physical properties of spinel titanates. Hence, in this study, the optical and photocatalytic properties of NTO were investigated and compared with those of spinel Li4Ti5O12 (LTO) and rutile TiO2. The bandgaps were estimated theoretically using hybrid density functional theory and experimentally using the ultraviolet–visible spectroscopy, and the obtained results were similar for both methods and spinel titanates. The valence- and conduction-band components of the spinel-type titanates were similar to those of other titanium oxides, and both NTO and LTO exhibited photocatalytic activity for sacrificial H2 evolution from water. However, although they have similar band structures and optical properties, the NTO photocatalytic activity was clearly lower than that of LTO. This can be attributed to the surface roughness and ease of defect formation in the NTO system, which hindered charge separation. These results indicate that the optical properties of spinel-type titanates can be tuned by replacing the cations at the 8a sites.

Integrated Data Analysis Making Use of the Total Information from Gas Chromatography and High-Resolution Time-of-Flight Mass Spectrometry to Identify Qualitative Differences Between Two Whisky Samples

Analysis of complex mixtures with gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) can produce a large amount of data. A new software program was recently reported that integrates all of the available mass spectrometric information from GC-HRTOFMS analysis into a concise report. New capabilities have now been added to the software to incorporate retention index data and to identify differences between two samples.

Proton triple-quantum solid-state NMR spectroscopy at slow MAS ∼10 kHz

Solid-state NMR is a valuable tool for elucidating the structures and dynamics of materials at an atomic level. Proton multiple-quantum (MQ) /single-quantum (SQ) correlation NMR spectroscopy is widely used to probe spatial proximity among protons. In the triple-quantum (TQ)/SQ correlation experiment, the excitation of triple-quantum (TQ) coherences is traditionally achieved by a 90° pulse in conjugation with double-quantum (DQ) recoupling sequences. Nevertheless, such sequences often suffer from low TQ filtering efficiency and may lead to overlapping spinning sidebands in the indirect TQ dimension, especially at a slow MAS frequency. Herein, we design several supercycled symmetry-based RNnν γ-free TQ recoupling sequences and compare their performance via extensive numerical simulation and experiments. Experimental results further confirm that pulse sequence gives the highest TQ filtering efficiency of around 20% in the slow MAS regime (∼10 kHz). The 2D TQ/SQ spectrum at slow MAS is completely free of spinning sidebands in the TQ dimension due to its γ-free nature. We establish that such a γ-free pulse sequence is a superior candidate for TQ spectroscopy at slow MAS frequency.

A non-planar 2D covalent organic framework derived from a Z-shaped building unit

Herein, a novel non-planar 2D COF with a stair-stepped structure was constructed from a Z-shaped building block for the first time. Compared with its similar planar COF, the unique stair-stepped non-planar COF possesses larger surface area and stronger fluorescence, which was further applied for specific explosive detection through a fluorescence quenching mechanism. This work not only extends the traditional planar 2D COF structures to unique non-planar structures based on the bottom-up design principle, but also expands the potential applications of COF materials.

Signal-to-noise ratio in diffusion-ordered spectroscopy: how good is good enough?

Diffusion-ordered NMR spectroscopy (DOSY) constructs multidimensional spectra displaying signal strength as a function of Larmor frequency and of diffusion coefficient from experimental measurements using pulsed field gradient spin or stimulated echoes. Peak positions in the diffusion domain are determined by diffusion coefficients estimated by fitting experimental data to some variant of the Stejskal–Tanner equation, with the peak widths determined by the standard error estimated in the fitting process. The accuracy and reliability of the diffusion domain in DOSY spectra are therefore determined by the uncertainties in the experimental data and thus in part by the signal-to-noise ratio of the experimental spectra measured. Here the Cramér–Rao lower bound, Monte Carlo methods, and experimental data are used to investigate the relationship between signal-to-noise ratio, experimental parameters, and diffusion domain accuracy in 2D DOSY experiments. Experimental results confirm that sources of error other than noise put an upper limit on the improvement in diffusion domain accuracy obtainable by time averaging.

One-Pot, Room-Temperature Conversion of CO2 into Porous Metal–Organic Frameworks

The conversion of CO2 into functional materials under ambient conditions is a major challenge to realize a carbon-neutral society. Metal–organic frameworks (MOFs) have been extensively studied as designable porous materials. Despite the fact that CO2 is an attractive renewable resource, the synthesis of MOFs from CO2 remains unexplored. Chemical inertness of CO2 has hampered its conversion into typical MOF linkers such as carboxylates without high energy reactants and/or harsh conditions. Here, we present a one-pot conversion of CO2 into highly porous crystalline MOFs at ambient temperature and pressure. Cubic [Zn4O(piperazine dicarbamate)3] is synthesized via in situ formation of bridging dicarbamate linkers from piperazines and CO2 and shows high surface areas (∼2366 m2 g–1) and CO2 contents (>30 wt %). Whereas the dicarbamate linkers are thermodynamically unstable by themselves and readily release CO2, the formation of an extended coordination network in the MOF lattices stabilizes the linker enough to demonstrate stable permanent porosity.

Introduction of a method to analyze 3D structures using homonuclear couplings_NM210004E

Structural analysis by NMR can provide not only a planar molecular structure but also three-dimensional structural information. In this Note, we describe a method for obtaining information on dihedral angles by using 1H-1H coupling constants (JHH values). For example, hydrogen atoms attached to a cyclohexane ring are either located in axial or equatorial positions in respect to the cyclohexane ring (Fig. 1). The dihedral angles between vicinal protons are known to be ∠Hax-C-C-Hax ≈ 180°, ∠Hax-C-Heq ≈ 60°, and ∠Heq-C-C-Heq ≈ 60°. If we look at the Karplus curve shown in Fig. 2, we can see that 3JHH of around 4 Hz can be expected in the case of the dihedral angle of 60°, while 3JHH of around 13 Hz corresponds to the dihedral angle of 180°. In reality, 3JHH values depend on substituents attached to the cyclohexane ring in substituted cyclohexanes, so the analysis is not straightforward, but the basic trend of having a larger J-value for a 180° dihedral angle compared to a 60° dihedral angle remains unchanged. Therefore, from the value of 3JHH of the methylene protons, it is possible to differentiate between the dihedral angle of 60° or 180°.

20 T/m high field gradient strength diffusion measurement system_NM210006E

The new generation diffusion probe is specially designed for diffusion applications that requires a large magnetic field gradient. By improving the design around the coil, the recovery time after field gradient pulse has been significantly shortened compared to the conventional model. Using a newly developed 50A bipolar magnetic field gradient power supply, a magnetic field gradient of 20 T/m (2000 G/cm) can be applied, making it possible to measure diffusion coefficients on the order of 10-14 m2/s. This system is ideal for measuring the diffusion of ions in solid electrolytes.

Insights into Dodecenes Produced from Olefin Oligomerization Based on Two-Dimensional Gas Chromatography–Photoionization–Time of Flight Mass Spectrometry and Multivariate Statistics

Catalyzed light olefin oligomerization is widely used in petrochemical industries to produce fuels and chemicals. Light olefins such as propene and butenes are commonly selected as feedstocks. Solid phosphoric acid (SPA) and zeolite are representative acidic catalysts. Both the feedstocks and catalysts have an impact on the product composition. In this study, state-of-the-art instrumentation two-dimensional gas chromatography (GC × GC) coupled photoionization─time of flight mass spectrometry was employed to investigate the composition of dodecene products produced from olefin oligomerization. Information such as the olefin congener distribution, dodecene structural subgroup distribution, and individual dodecene isomers was obtained and utilized in the statistical analyses. By using specific data sets of the product composition, the distinguishment between SPA and zeolite catalysts as well as among the feedstocks was achieved by applying the unsupervised screening approaches (principal component analysis and hierarchical clustering analysis). The potential indicators of catalysts and feedstocks were selected by the feature selection methods (univariate analysis: analysis of variance and multivariate analysis: partial least squares-discriminant analysis).

Other Resources

The following resources are available for the JEOL Analytical Instruments:


Corona - Glow Discharge (DART Ion Source)

January 28, 2022