Analytical Instrument Documents

Gas chromatography combined with high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) is a powerful tool for the analysis of complex mixtures. The AccuTOF GC-Alpha (JMS-T2000GC) mass spectrom-eter is fast, accurate and sensitive with high mass-resolving power and high mass accuracy.

The composition of volatiles from freshly ground roasted coffee is complex, with hundreds of chemical compounds contributing to the aroma. Headspace solid-phase microextraction was used to sample volatiles from five different coffees for analysis by GC-MS. Chemometric analysis revealed specific differences between coffees from different origins and different preparations.

The power flow process mediated by spin current in the bilayer device consisting of ferromagnetic metal (FM) and nonmagnetic metal (NM) layers is examined by realizing experimental evaluations for each process from the microwave absorption to electromotive force (EMF) output. The absorption power by ferromagnetic resonance (FMR) of the thin FM layer during the EMF output is directly measured in operando using an antenna probe system. The transfer efficiency of the absorption power into the NM layer by spin pumping is estimated from strict linewidth evaluation of EMF spectra. The maximum transfer efficiency of the spin pumping power to the external load via the inverse spin Hall effect is determined to be 4.2 × 10–8 under 162 mW microwave irradiation using an analysis model assuming a parallel circuit. The main factors reducing the efficiency are found to be low resistivity of the NM layer and the interface loss. These quantifications are important as a first step to consider the efficient transfer of spin energy mediated by spin currents.

Non-targeted analysis of complex mixtures by GC-HRMS should make use of all of the available data to identify unknowns. An automated data analysis software package combining chromatographic deconvolution with integrated analysis of high-resolution mass spectra for electron ionization (EI) and soft ionization measurements is applied to the identification of trace impurities in a fine chemical (triphenylphosphine).

Highlights: • Selective detection of 1H signals of API in a tablet formulation is proposed. • 1H signals of excipients are suppressed. • 1H signals in the vicinity of nuclei (here 14N) which only appear in API are excited. • 1H{14N} magnetization is diffused to 1Hs in API crystals by RFDR recoupling.

This experimental approach allows direct correlation of JCC values with specific molecular conformations since, in crystalline samples, molecular conformation is essentially static and can be determined by X-ray crystallography.

A collaborative paper was published in Tetrahedron. The INADEQUATE spectrum discussed in this research was obtained using a cryogenic probe (UltraCOOL probe) in liquid helium in a JEOL 800 MHz spectrometer (JNM-ECZ800R).

We propose a dynamic covalent chemistry (DCC)-induced linker exchange strategy for the structural transformation between covalent organic frameworks (COFs) and cages for the first time. Studies have shown that the COF-to-cage and cage-to-COF transformations were realized by using borate bonds and imine bonds, respectively, as linkages. Self-sorting experiments suggested that borate cages and imine COFs are thermodynamic minimum compounds. This research builds a bridge between discrete and polymeric organic scaffolds and broadens the knowledge of chemistry and materials for porous materials science.

Advanced statistical analysis of MALDI MS imaging data required by SpiralTOF-plus while taking full advantage of its high mass-resolving power.

Azoxystrobin (AZ) is a broad-spectrum synthetic fungicide widely used in agriculture globally. However, there are concerns about its fate and effects in the environment. It is reportedly transformed into azoxystrobin acid as a major metabolite by environmental microorganisms. Bacillus licheniformis strain TAB7 is used as a compost deodorant in commercial compost and has been found to degrade some phenolic and agrochemicals compounds. In this article, we report its ability to degrade azoxystrobin by novel degradation pathway. Biotransformation analysis followed by identification by electrospray ionization-mass spectrometry (MS), high-resolution MS, and nuclear magnetic resonance spectroscopy identified methyl (E)-3-amino-2-(2-((6-(2-cyanophenoxy)pyrimidin-4-yl)oxy)phenyl)acrylate, or (E)-azoxystrobin amine in short, and (Z) isomers of AZ and azoxystrobin amine as the metabolites of (E)-AZ by TAB7. Bioassay testing using Magnaporthe oryzae showed that although 40 μg/mL of (E)-AZ inhibited 59.5 ± 3.5% of the electron transfer activity between mitochondrial Complexes I and III in M. oryzae, the same concentration of (E)-azoxystrobin amine inhibited only 36.7 ± 15.1% of the activity, and a concentration of 80 μg/mL was needed for an inhibition rate of 56.8 ± 7.4%, suggesting that (E)-azoxystrobin amine is less toxic than the parent compound. To our knowledge, this is the first study identifying azoxystrobin amine as a less-toxic metabolite from bacterial AZ degradation and reporting on the enzymatic isomerization of (E)-AZ to (Z)-AZ, to some extent, by TAB7. Although the fate of AZ in the soil microcosm supplemented with TAB7 will be needed, our findings broaden our knowledge of possible AZ biotransformation products.

rss

Other Resources

Walkup NMR
  • See how the Delta NMR software allows users to just "walk up" and start NMR experiments
  • Mass Spec Reference Data
  • View our page of useful molecular references for Mass Spec
  • Tutorials (Mass Spec)
  • Documents on the basics of mass spectrometry
  • Delta NMR software Tutorials
  • Videos on how to use the Delta NMR software
  • No-D NMR
  • Description of No-D NMR and how it can be used to eliminate the need for deuterated solvents
  • Non Uniform Sampling (NUS)
  • Description of how NUS is used to greatly reduce the time needed for running NMR experiments
  • NMR Basics
  • Overview of the Basics of NMR Theory
  • NMR Magnet Destruction
  • See our presentation of the slicing open of a JEOL Delta-GSX 270 MHz NMR Magnet
  • NMR Training
    Basic Operations and System Management for JEOL NMR Users
    Mass Spec Training
    Learn more about spectrometer operation and maintenance, data collection and processing, and advanced MS software operation.
    JEOLink NMR Newsletter
    We publish and send out this NMR newsletter to our customers. They can also be viewed here.
    Mass Media Newsletter
    We publish and send out this Mass Spec newsletter to our customers. They can also be viewed here.
    © Copyright 2024 by JEOL USA, Inc.
    Terms of Use
    |
    Privacy Policy
    |
    Cookie Preferences