Electron Optic Documents


JEOL Resources

Documents of interest in support of your JEOL product

Luminary Micro – Precision Localized Laser Heating Without Special Holder

Luminary Micro is a Compact Specimen Photoexcitation System (CPXS) for JEOL TEMs. It is composed of a modulated laser, a compact optical delivery system, an inlet port, and a mirror. With this add-on, users can direct and focus the laser output onto the TEM sample in situ. Luminary Micro can induce a rich variety of reactions and dynamic processes in the specimen, thanks to its <40 μm FWHM focus size, adjustable peak power up to 3 W, and the modulated pulse widths ranging from a few microseconds to seconds. With Luminary Micro, users can study laser-induced phenomena in situ using fast cameras. Combined with IDES/JEOL EDM fast shutter and/or Relativity subframing systems, Luminary Micro allows users to perform time-resolved studies using pump-probe methods in the microsecond time scale. The extremely compact footprint of the system allows easy installation without affecting the TEM resolution. The user can heat specimens to thousands of degrees C while keeping the freedom to use the specimen holder of your choice.

Magnetic Material Analysis Using the Super Hybrid Lens (SHL)

The SHL is a newly designed objective lens for high-resolution observation at low accelerating voltages. Unlike the semi-in lens SEM, with a large electromagnetic field below the lens, which was widely used for high-resolution, low kV observation, the SHL achieves high resolution by superimposing a magnetic field onto the electrostatic field to suppress magnetic field leakage. Therefore, the SHL is suitable for the high resolution observation of magnetic materials and electron backscattered diffraction (EBSD) even at short WD, which were difficult with the semi-in lens type SEMs. The SHL type SEM can also be configured for low vacuum operation while the semi-in lens type cannot.

Minimum Fringe Illumination and Aberration - Free Image Shift on the JEOL CRYO ARM™

Using Minimal Fringe Illumination and Coma-Free Image Shift an unprecedented throughput is possible on a JEOL CRYO ARM™. Given that a typical structure as published on EMPIAR requires 4-5000 images, the potential therefore exists of solving roughly 4-5 structures per day using a JEOL CRYO ARM™.

Nanoscale Analysis with STEM

STEM-in-SEM (Scanning Transmission Electron Microscopy in an SEM) has become a popular technique for biologists, polymer scientists and materials scientists for its ease of use, cost effectiveness and high resolution. It is especially suited to investigation of the internal structure of thin film (50-100nm) samples as well as size and shape of submicron to nanometer particles. With standard SEM imaging modes and EDS analysis on bulk samples, there are limitations in the ultimate resolution that can be achieved due in part to the beam-sample interactions. With STEM-in-SEM, the sample is very thin and the interaction volume is greatly reduced, which allows for sub-nanometer resolution and nanoscale analysis. One of the main challenges to EDS analysis using STEM-in-SEM is how to reduce the hard X-ray contribution from the detector and chamber (generally peaks from Al and Si). JEOL has designed a dedicated Analytical holder with a carbon retainer that greatly reduces these spurious peaks allowing for more accurate analytical data.

Nanoscale Analysis: Latest Innovation in JEOL FE SEMs

The ability to increase the probe current for fast microanalysis, while still maintaining a small spot size and small volume of excitation for high resolution, has been the holy grail of microanalysis in SEM. One of the unique features of JEOL’s FE SEMs is the patented Aperture Angle Control Lens (ACL). This lens automatically optimizes for both high resolution imaging at low probe currents and high spatial resolution X-ray analysis at high probe currents with a seamless transition between the two. This is essential for rapid analysis and superb image quality and is particularly true for low kV microanalysis. The ACL works by considering effects of all aberrations (spherical, chromatic and diffraction limitations) on spot size and automatically optimizing the convergence angle.

Observation of wet specimens sensitive to evaporation using scanning electron microscopy (Microscopy magazine)

Wet specimens are notoriously difficult to image in scanning electron microscopes (SEM) owing to evaporation from the required vacuum of the specimen chamber. Traditionally, this issue has been addressed by increasing the specimen chamber pressure. Unfortunately, observation under high specimen chamber pressure cannot prevent the initial evaporation effects. The wet cover method, where the original surface water is retained (and, therefore, considered wet), provides a way to introduce and subsequently image specimens that are sensitive to evaporation within a SEM, while preventing evaporation-related damage, and to observe interesting specimen–water interactions.

Particle Analysis 3

JEOL’s Particle Analysis Software 3 (PA3) enhances the capability of your analytical SEM by automating the detection, EDS analysis and classification of particles, grains or other features in your samples. Fully integrated with our SEM-EDS systems, PA3 increases throughput and productivity by providing fast, unattended measurements across large areas of a sample, or multiple samples.

Poor Man’s Cryo-SEM

Cryo-SEM imaging is a powerful tool in studying the structures of electron beam and vacuum sensitive materials. These materials include: fragile biological structures such as fungi, plants, cells, etc. as well as soft or volatile samples and even liquids. Cryo-SEM offers some clear advantages by rapidly freezing a sample prior to imaging, thus maintaining the sample as close as possible to its natural state. Long dehydration and chemical fixation steps can be avoided. Inhibiting dehydration helps maintain delicate structures without shrinkage. Moreover, volatile or even liquid samples are stabilized under the electron beam. Cryo fracturing techniques allow for study of the internal microstructure of these types of vulnerable materials as well. A few of the disadvantages are that for efficient freezing, the sample size must be small and the price may not be in everyone’s budget for a state-of-the-art cryo system with freezing station, cold stage, vacuum transfer system etc.

Quantitative Hyperspectral X-ray Map (QMap)

When a sample is exposed to the electron beam in a scanning electron microscope a variety of signals are generated. X-rays being one of those signals that can provide valuable insight into a materials chemical makeup. The collected X-ray signal includes background X-ray radiation and more importantly, X-rays of specific energies, that are characteristic of the elements present in the sample. For this reason, an energy dispersive X-ray detector (EDS) is one of the most common detectors that is added to a scanning electron microscope (SEM). It is used to not only determine the elements present in a sample but in many instances can give insight to the quantity as well as the spatial distribution of these elements over very small volumes.

Relativity – High Frame Rate Imaging With ANY Camera

The IDES Relativity Electrostatic Subframing System multiplies the frame rate of cameras on JEOL TEMs. Microscopes equipped with Relativity achieve exceptional time resolution, data throughput, and advanced automation capabilities. Addition of Relativity allows current JEOL TEM users to forego expensive camera upgrades to their existing systems, instead relying on installation of an electrostatic optics assembly in a wide-angle camera port. These optics rapidly deflect the image data to different regions (subframes) of the camera in a programmable sequence. Each camera readout contains a tiled array of crisp, blur-free subframes. Raw data is automatically analyzed to give a stack of open format images that are loaded back into the camera control software for viewing or further analysis.

Other Resources

The following resources are available concerning Electron Optic related instruments:

  • Image Gallery
    -View a selection of electron images
  • FAQs
    -See answers from questions often asked about our SEM and Surface Analysis instruments
  • Links & Resources
    -View our page of useful and interesting links to various electron microscopy resources
  • Videos
    -View some product presentations of our instruments
  • SEM Theory and SEM Training